
Quantum Error Correction
2021 QCIPU Summer School

Scott Lawrence*

21-22 July 2021

Real-world quantum computers, like real-world classical computers, are
built from faulty machinery. Unlike classical computers, however, the errors
that occur on quantum computers are relatively large and frequent. Quantum
errors can be alleviated by using multiple physical qubits to encode a single
logical qubit. Such a construction is referred to as a quantum error-correcting
code (QEC). QECs are the main topic of these lectures. At the end, we will
discuss the threshold theorem: when the error rate of physical qubits is below
a certain threshold, QECs can be used to design logical qubits with arbitrarily
low error rates.

These are lecture notes for two one-hour lectures delivered at the Fermilab-run QCIPU
summer school in 2021. They are intended as a non-rigorous invitation to quantum error
correction and fault tolerance, assuming minimal background in quantum mechanics and
computer science. The first lecture is to consist of the first and second sections; the second
lecture continues with the third section and introduces the all-important threshold theorem
in the fourth section.

These notes assume familiarity with various parts of linear algebra, and a bit of under-
standing of how quantum computation works. For completeness, a review of linear algebra
and density matrices is given in Appendix A.

These notes include some content, including many examples, not covered in the video
lectures. This extra content is included as appendices within each section (e.g. 1.A).

*scott.lawrence-1@colorado.edu

1

1. Classical Error Correction

1. Classical Error Correction

Anyone can make mistakes, but only an idiot fails to correct them.

(Cicero)
While performing some computation, I need to store the information I’m working with.

Often, this storage is not perfect: if I store a 0, when I go to retrieve it, I might find that the
bit has been flipped to a 1. The physical mechanism for how this happens (thermal noise?
a cosmic ray?) isn’t important right now. Let’s just assume that there’s some probablity p
that the bit I store gets flipped1. What implications does this have for the success of my
computation?

If my computation involves only this one bit, then the probability that the result is cor-
rupted is just p — or in other words, the probability that the computation proceeds without
error is (1− p). If there are N bits, however, the computation is uncorrupted with probabil-
ity only (1− p)N . This can be quite small! The probability of success decays exponentially
with the number of bits.

For concreteness, let’s say that p≈ 0.01, and I want to do a computation with N = 100
bits. The probability of each individual bit flipping is quite small — seemingly negligible
— but the whole computation proceeds uncorrupted only 37% of the time. This is an
unacceptable rate of errors, so we must reduce p.

Ordinarily, we might try to reduce p by lowering the temperature, shielding the proces-
sor from cosmic rays, and banning the graduate students from eating in the lab. These are
all sensible measures, but in practice there comes a point where lowering p by physical
means is just too difficult or expensive. Let’s say we’re stuck with p ≈ 0.01, and can’t
afford to (or figure out how to) lower it by better engineering. It turns out there’s a way to
do the computation anyway.

In the case where we only need to encode one bit, let’s imagine that we made a duplicate.
So, if we need to store a 0, we’ll store 00 on two physical bits, and if we need to store a 1,
we’ll store 11 on two physical bits. In this way, two physical bits are combined to form a
single logical bit.

At first glance, this doesn’t do much good — before, the probability of error was p, but
now it’s nearly twice that: 1− (1− p)2 ≈ 2p. However, if we go to read the logical bit and
discover that the physical bits are in the configuration 01 or 10, then we know that an error
has occured! It’s much better to know that an error has occured than to blithely accept an

1In your computer, the probablity of such an error occuring on any given day, on any given bit, is something
like ∼ 10−10. In other words, bit-flips happen, but require some effort to detect.

2

1. Classical Error Correction

incorrect computation. We will only be ignorant of the error when both bits are flipped.
This is much less likely, with probability p2.

In the case of N bits, this error detection scheme has a probability (1−2p)N of produc-
ing the correct answer, a probability of 2N p+O(p2) of detecting an error, and a probablity
of N p2 +O(p3) of yielding a corrupted answer without reporting an error. (The “big-O”
notation O(p2) indicates that terms quadratic in p, or of higher order, have been dropped.
When p is small this is a good approximation.) The probability of getting the right an-
swer without trouble has been reduced, but the probability of getting the wrong answer
has fallen much more steeply, so this is a net gain.

The shortcomings of this method are due to the fact that errors can be detected, but never
corrected. We can fix this: instead of 2 physical bits, we’ll use 3. The logical bit 1 will be
ideally encoded as 111, but physical bitstrings 110, 101, and 011 will also be accepted as
corresponding to a logical 1. Similarly, the logical bit 0 is ideally encoded as 000, but any
majority-0 physical bitstring is accepted as a logical 0.

Now, there are three times as many chances for bitflip errors, but two bitflips (in the same
codeword) are required before the error actually matters. As a result, we can calculate the
probability of a corrupted computation: 3N p2. For small p, this is a dramatic improvement
over the original probability of ∼ N p.

This triple repetition code is an example of the general idea of an error-correcting code.
By using multiple physical (qu)bits to encode a single logical (qu)bit, the effective proba-
bility of errors is squared or better. There may be small factors of 2 or 3 (or 9) introduced,
but when the original probability of physical errors is small, these factors will be drowned
out by the fact that two or more physical errors are required to produce a single logical
error.

1.1. Hamming Codes

Hamming codes are simple, but effective enough to be practical. If you buy RAM and see
it labelled “ECC”, Hamming codes are probably being used.

In the triple correction code, three physical bits were used to encode a single logical bit.
We could reduce the error rate further, from p2 to p3 or even lower, by using five or more
bits per codeword. Such schemes are very inefficient — to do better, we will work with
blocks of more than one logical bit. For the purposes of error correction, each block can
be treated as a single entity; we will see that this allows far more efficient schemes.

To understand Hamming codes, we first need the notion of Hamming distance. The
Hamming distance between two binary strings of equal length is the minimum number of

3

1. Classical Error Correction

00 7→ 000

01 7→ 011

10 7→ 101

11 7→ 110

Figure 1: Codewords for Hamming(3,2).

bits that must be flipped to get from one to the other. As an example, 0110 and 0100 have
a Hamming distance of just 1. Notice that Hamming distance corresponds exactly to our
error model: if the distance between two strings is d, then the probability of one being
transformed, by bitflip errors, to the other is ∼ pd .

Central to Hamming codes is the notion of a parity bit. Let’s say we want to transmit
two bits, and then detect any bitflip error. We could always just transfer the same two
bits twice, doubling the length of the message: any single bitflip will be detected by the
fact that the first message is not the same as the second. However, we can do much better
by simply appending a parity bit — a bit that denotes whether the number of 1s in the
message was even or odd. The four codewords are shown in Figure 1. Note that the
minimum Hamming distance between any two codewords is 2, indicating that at least 2
bitflips are required to obtain an undetectable error.

Now we’re ready to move to constructing more sophisticated codes. We’ll begin with
one for encoding 4 logical bits via 7 physical bits, often referred to as Hamming(7,4). This
code will have three parity-check bits; one acting on bits 1,2,4, one on bits 1,3,4, and one
on bits 2,3,4. The other four bits in a codeword will be unchanged from the logical bits
we’re seeking to encode.

This code is concisely represented by this code generating matrix:

G =

1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1

 .

A column of G corresponds to a bit of the codeword; a row corresponds to one of the 4 bits
we’re seeking to encode. Each column can be thought of as specifying the list of bits from
which the parity check is computed. Physical bits 3,5,6,7 contain the original message,

4

1. Classical Error Correction

and bits 1,2,4 are the parity-check bits. Symbolically, we have c ≡ GT m mod 2, where
m is a vector of bits in the message, and c is the codeword2.

Another way of thinking about the structure of the parity-check is as a list of constraints
on the set of valid codewords. For instance, you can check for yourself that w1+w3+w5+
w7 ≡ 0 mod 2 for any uncorrupted codeword. Because there are 7 bits in a codeword and
only 4 bits in a message, there are 3 such constraints we can write down, summarized by
Hw≡ 0 mod 2, where

H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 .

Note that Hamming(7,4) compares very favorably to the triple repetition code. Both
have the property that single bitflip errors are corrected, but the triple repetition code triples
the length of the message, where the Hamming code does not even double it.

A Hamming code is a particular sort of linear code. In general, a linear code is specified
by a code generator matrix G (which tells us which parity bits are based on which inputs),
from which we can obtain a parity-check matrix H (which mandates linear relations that
must hold true for any codeword).

The parity-check matrix given for Hamming(7,4) has a peculiar property: except for
000, every three-bit string is present as a column! The term “Hamming code“ describes
any linear code whose parity check matrix has this property. So, for instance, you can
see that the triple repetition code introduced at the very beginning of this section is also a
Hamming code, with these code generator and parity-check matrices:

G =

1
1
1

 and H =

[
1 1 0
1 0 1

]
.

Unsurprisingly, the triple-repetition code also goes by the name Hamming(3,1).
A bit more of the theory of linear codes is developed in Section 1.A; it is not a prereq-

uisite for understand the quantum case.

1.2. Other Types of Errors

So far we’ve considered the performance of error-correcting codes in the presence of single
bit-flip errors. More than one bit might be flipped, but with probability falling exponen-

2In fact, if we view G as a matrix in the finite field F2, then we can just write c = GT m. In this form,
Hamming codes on bits can be generalized to codes on trits, and so on.

5

1. Classical Error Correction

111 000 111 111 000 . . . 10110 . . .

111 001 111 110 00 . . . 10110 . . .

110 011 111 100 0 . . . 1110 . . .

Figure 2: The degradation of the message 10110, coded with the Hamming(3,1), under
multiple erasures. The first erasure (in the second codeword) has no effect, but
the second (in the first codeword) introduces an effective single-bit erasure into
the coded message.

tially with the number to bits to be flipped. If we change this model, then the performance
of the ECC changes.

For instance, if (due to a quirk of the hardware) there’s a substantial probability for all
bits in a codeword to be flipped, the triple repetition code will neither correct nor detect
the error. Under the previous error model, this sort event only happened with probabiity
p3L, and was completely negligible. The triple repetition code requires that assumption to
be negligible.

Perhaps a more realistic change to the error model is to allow “erasures” — that is, the
deletion of bits from a stream. This is unlikely if you think about RAM, where each bit
has a unique index, but is much more plausible if we consider the case of communication,
where the receiver might blink and miss a bit. An erasure might change 10110→ 1010;
here the receiver blinked exactly in the middle of the transmission.

The triple repetition code does not fare so well in the presence of erasures. Remember
that the code can handle single bitfips gracefully, and even multiple bitflips as long as no
two occur in the same codeword. It turns out that this code can also handle a single erasure,
but not more, no matter how far separated the erasures are. This is illustrated in Figure 2.

We won’t consider analogous errors even in the quantum case, but these examples
should convince you of an important point: the performance of an error correcting code
depends strongly on the types of errors to which it will be subjected. In fact, there’s no
such thing as a completely general code: for any code, there exists a class of errors that
the code does not reduce. This is true in the quantum case as well.

6

1. Classical Error Correction

1.A. Theory of Linear Codes

The Hamming codes described above are a specific type of linear code. Linear codes can
be defined for any finite field Fq, but we’ll remain specialized to the case F2 (binary linear
codes) for simplicity.

A field is a set equipped with two operations: addition and multiplication. They must
obey all the usual rules: addition and multiplication are commutative, and multiplication
distributes over addition. Additionally, there are two special elements. The additive iden-
tity (0) has the property that 0+a= a for any a, and the multiplicative identity (1) similarly
obeys 1 ·a = a. Finally, for every a, there must be an additive inverse −a and (if a 6= 0) a
multplicative inverse a−1, so that a+(−a) = 0 and aa−1 = 1.

The real numbers are the most familiar field, the complex numbers a close competitor.
We can construct fields that have a finite number of elements, and the simplest non-trivial
case is F2, the finite field with two elements. The elements are {0,1}. Addition corre-
sponds to logical XOR; in particular, 1+1 = 0. Multiplication corresponds to logical AND.

Linear algebra makes sense over any field, not just the reals or complexes. As an exam-
ple, in F2, we have (

1 0
1 1

)(
1
1

)
=

(
1
0

)
.

Note that matrix coefficients as well as the vector are valued in the field F2.
A codeword is a sequence of n elements of F2 (bits), which once decoded will represent

k logical values (also elements of the field3). In the triple repetition code above, we had
n = 3 and k = 1, but any values are possible so long as n≥ k. In the case n = k, of course,
no error correcting can be done. In general, n is termed the length, and k the rank.

The defining feature of a linear code is that every linear combination of codewords is
also a codeword. This idea only makes sense because we are working in a finite field; oth-
erwise, this requirement would imply infinitely many codewords! We can quickly verify
that the triple repetition code is in fact linear. The code is spanned by (0;0;0) and (1;1;1);
because the only coefficients available are 0 and 1, no other vectors can be obtained by
multiplication. The last possibility is adding these vectors, which of course yields the
second again.

We described Hamming(7,4) in terms of generator and check matrices. These are gen-
eral objects that can be constructed for any linear code. Remember that every linear com-
bination of codewords is also a codeword; in other words, the set of codewords forms a

3This means that there are 2k codewords. In the general case of Fq, there are of course qk codewords.

7

1. Classical Error Correction

(k-dimensional) linear subspace of Fn
q. The generator matrix G is nothing but a list of k

basis vectors. The bits (or q-dits in general) serve as coefficients of these k vectors; the
vector GT m is the encoding of a message m (itself a vector with k components).

The check matrix H is a list of n− k basis vectors for the orthogonal subspace Fn−k
q .

The inner product between a valid codeword and any vector in this orthogonal subspace
must be 0; thus, computing Hv tells us immediately whether v is a valid codeword.

The Hamming distance between two vectors is the number of elements that are differ-
ent; equivalently, the distance d(u,v) between vectors u and v is the number of non-zero
elements in u− v. In a typical linear code, many Hamming distances are possible. For
instance, in the Hamming(7,4) code described above, three valid codewords are

0
0
0
0
0
0
0

,

1
1
1
0
0
0
0

, and

1
1
1
1
1
1
1

. (1)

The first two have a Hamming distance of 3, and the first and third have a Hamming
distance of 7.

Given a codeword v, we can ask what the minimum Hamming distance is to a distinct
codeword. For a linear code, this does not depend on choice of v! To see this, first select
two codewords u0,v0 that have a globally minimal Hamming distance; i.e. are as close
as any two codewords in the code can be. Now let v be some other codeword. Since the
code is linear, v− v0 +u0 ≡ u is a valid codeword. The distance between this new pair is
d(u,v) = d(u0,v0), demonstrating that v (an arbitrary codeword) has the same minimum
Hamming distance as any other codeword. As a result of the codeword-independence of
the minimum Hamming distance, the quality of a linear code does not depend on what
data is being encoded.

With a minimum Hamming distance of d, how many bit-flips can be corrected? We can
of course detect up to d− 1 flips, but this is not the same as being able to correct them.
For instance, in the case of the triple repetition code, d − 1 = 2 flips will result in the
error being ‘corrected’ to the wrong value. The number of correctable errors is half the
minimum distance, bn−1

2 c.
Early on in this section, we noted that with n = k, no error correction — or even error

detection — can be performed. Since the Hamming distance quantifies the level of protec-

8

1. Classical Error Correction

tion received from a code, it comes as no surprise that there is a general bound relating n,
k, and d:

k+d ≤ n+1 (2)

A code that saturates this bound is in some sense optimal, at least among codes with that
value of k and n. The triple repetition code has n = 3, k = 1, and d = 3, and therefore
saturates this bound. This notion of optimiality does not account for efficiency, that is, the
ratio n

k .

9

2. Quantum Errors

2. Quantum Errors

‘To err is human,’ but a human error is nothing to what a computer can do
if it tries.

(Agatha Christie)
It’s tempting to try to apply the classical codes of the previous section directly to quan-

tum computers. Unfortunately, even the simple triple repetition code fails in the face of
reasonable quantum errors. Suppose we wish to transmit the state4 |ψ〉 = |0〉+ |1〉. This
state is often refered to as |+〉, and is an eigenstate of σx with eigenvalue 1. It is the equiv-
alent of the state |0〉, but in the X-basis. Under the triple repetition code5, this is mapped
to

|Ψ〉= |000〉+ |111〉.
A bitflip, which the triple repetition code is designed to be able to handle, is implemented
by the operator σx acting on a single qubit. In this case, we can see that

σx(2)|Ψ〉= |010〉+ |101〉.

When all qubits are measured in Z-basis, it will not be difficult to automatically repair this
error, as expected. However, this is not the only sort of error that could occur. Consider
for instance the action of σz on a single qubit. Now we have

σz(2)|Ψ〉= |000〉− |111〉.

Decoded, this yields |0〉− |1〉 = |−〉— the triple repetition code does nothing to protect
us from this sort of error.

In this section we will define in detail what sorts of errors we can hope to protect against.
Error correcting codes that are effective against these sorts of errors are discussed in the
final two sections.

2.1. Examples of Errors

We have already seen one example of a quantum error that can occur: the bitflip. When a
bitflip is performed, the state transforms as Ψ 7→ σx|Ψ〉, and so the density matrix trans-
forms as ρ 7→ σxρσx. Therefore, in the language of density matrices, the bitflip error is

4Here and throughout, I will work with non-normalized states.
5You may reasonably object that this is not the most natural generalization of the triple repetition code.

One could instead map |Ψ〉 7→ |Ψ〉⊗ |Ψ〉⊗ |Ψ〉. Unfortunately, by the no-cloning theorem, no unitary
operation can implement the encoding!

10

2. Quantum Errors

superoperator defined as

Ebf,p(ρ) = (1− p)ρ + pσxρσx.

This denotes exactly the event “the bitflip operator σx is applied to the qubit with proba-
bility p”.

Another option is the phase flip, again seen above. The only change is that σz is applied
instead of σx:

Epf,p(ρ) = (1− p)ρ + pσzρσz.

The same idea extends to σy. In fact, we can be slightly more general. The Pauli matrices
σx,σy,σz are all elements of the group SU(2), and any element U ∈ SU(2) can be used
in their place to obtain a sensible error operation (although note that if U is the identity
element, the error is not concerning!).

EU,p(ρ) = (1− p)ρ + pUρU .

It’s reasonable to imagine that designing a code that protects against all possible errors EU
will be difficult. However, note that any element of SU(2) — that is, any 2× 2 unitary
matrix of unit determinant— can be written as a linear combination of the Pauli matrices
and the identity matrix6:

U = α +~β ·~σ .

Then the most general possible error operation along these lines is

EU(ρ) = c00ρ + c0xρσx + . . .+ cxxσxρσx + cxyσxρσy + . . .= ∑
i, j

ci jσiρσ j

with some coefficients ci j determined from α,~β . (For notational convenience, let σ0 be
the identity matrix.)

This is remarkably convenient! It means that in order to verify that an error code is
effective against a continuum of possible errors (in this case SU(2)), we only need to
consider a finite number of discrete errors.

One special case is worth particular mention. Arguably the most natural error operation
of the form EU is the one that is symmetric with respect to exchange of the axes (and in
fact, with respect to any SU(2) rotation). This is called the depolarizing channel, and has
the form

Edp,p = (1− p)ρ +
p
3
[σxρσx +σyρσy +σzρσz] .

6Unitarity imposes an additional constraint between α and ~β , which we won’t need to use.

11

2. Quantum Errors

The error operation EU is not the most general one-qubit error possible. For instance, it
is not necessary for E to be trace-preserving (you can check for yourself that EU always
is). For the rest of these notes we will ignore such processes and focus on the case here
of errors obtained from the Pauli matrices. However, you should be aware that these other
sorts of errors exist, although the analysis methods described in these notes carry over with
little or no change.

2.2. Independent Errors

So far, all the errors described affect a single qubit at a time. It’s perfectly possible to
construct and consider forms of noise that affect two qubits together. However, when the
probability of an error on a single qubit is small, it’s often reasonable to assume that the
probability of a correlated error on two qubits is smaller still, and so this form of noise can
be neglected. There are some places when this assumption is definitely invalid. Most ob-
viously, when we apply a two-qubit gate (like the controlled-not gate), the implementation
of the gate is likely to be slightly faulty, introducing an error channel that certainly acts in
a correlated way on the two qubits. For simplicity, we’ll ignore such situations.

This sort of assumption — that noise affects different (qu)bits independently — was
critical to the error analysis of classical codes in the previous section. In the case of
quantum errors, the precise assumption we will make is that the full error operation E (ρ)
factorizes into a bunch of one-qubit errors. That is, we can write

E (ρ) = [E1 ◦E2 ◦ · · · ◦EN] (ρ),

where En acts only on the nth qubit.

12

3. Quantum Error Correction

3. Quantum Error Correction

Now that we have a sensible model for errors on a quantum computer, we can construct
reasonable schemes for quantum error correction, and eventually, in the final section, fault-
tolerant circuits.

3.1. Three-Qubit Codes

The three-qubit code — the naive generalization of the classical triple repetition code —
was introduced in the previous section, and we know it doesn’t correct for some errors
(like bitflips in X-basis). Nevertheless, it’s worth examining in detail how it might be im-
plemented. The ideas behind the implementation generalize well to other quantum codes,
and are simplest to see in this low-dimensional case.

In some sense the defining operation of the three-qubit code is the encoding circuit. We
cannot simply duplicate the state of the qubit due to the no-cloning theorem (otherwise
quantum error correction would be easy!). However, we can define a unitary operation
that acts on the basis states |0〉 and |1〉 in the expected way, and extends to all others by
linearity. This is shown on the left of Figure 3. We have a single qubit, which must be
encoded. We bring in two extra qubits, initialized to |0〉. Two CNOT gates are sufficient to
rotate these to match (in Z-basis) the original qubit, and the encoding is complete.

Decoding introduces a caveat: we must be careful not to accidentally measure the state
of the logical qubit early. This would happen, for instance, if we simply threw out two of
the qubits. Instead, we must separate out a single qubit that contains the logical state, and
two extra qubits that only have information about what errors occured. Such a procedure
is shown on the right of Figure 3. The top qubit contains the decoded message.

It turns out we can also perform error correction without ever decoding. This is very
useful, since immediately after decoding, the logical qubit is not error-corrected, and is

|0〉 •

|0〉 •

• •

•

•

Figure 3: Encoding (left) and decoding (right) circuits for the three-qubit (bit flip) code.

13

3. Quantum Error Correction

• •

•

•

|0〉 •

|0〉 •

Figure 4: An error correction circuit for the three-qubit (bit flip) code. Note that the entire
process is unitary until the two ancilla are discarded.

vulnerable. The core idea comes from looking at the decoding procedure more carefully:
we were able to separate our from the three qubits, two qubits that contained only informa-
tion about what error had occured. If instead of performing a unitary transformation on the
original three qubits, we bring in two (or, for convenience, possibly more) ancilla, we can
put the information about what error occured (called the syndrome) in those ancilla. The
ancilla are then used to control a circuit that corrects the error in the original three qubits.
After this is complete, the ancilla can be safely measured or discarded. This procedure is
shown in Figure 4.

This completes our implementation of the three-qubit code. Before moving on, note
that there are actually many possible three-qubit codes. The example above is often called
the three-qubit bit flip code, as it is designed to prevent bit flips, that is, the operation of
σx. However, we could just as well design a three-qubit phase flip code. This is obtained
simply by using the Hadamard gate to swap the X- and Z-axes before encoding. It has the
property that it is immune to the operation of σz.

3.2. Shor Code

The Shor code extends the three-qubit code to address all errors affecting a single qubit.
The encoding procedure is simple. First, a qubit is encoded using the phase-flip code.
(To be concrete, encode |0〉 7→ |+++〉, and |1〉 7→ |−−−〉.) This results in three qubits.
Each of those three qubits is now encoded with the bit-flip code. This results in nine
physical qubits to encode the single original logical qubit. This sort of construct, where

14

3. Quantum Error Correction

two error correcting codes are applied in sequence to achieve an improved code, is known
as concatenation, and will feature prominently in the next section.

The resulting codewords are:

|0〉 7→ (|000〉+ |111〉)⊗3 and |1〉 7→ (|000〉− |111〉)⊗3.

The decoding procedure mirrors the encoding procedure. First, each of the three in-
termediate qubits is decoded using the bit-flip decoding procedure discussed above. This
results in three qubits which represent a single logical qubit via the phase-flip code, and
that decoding procedure is used.

Now we must show that the Shor code actually works — that it protects against arbitrary
one-qubit errors. The easiest one-qubit error to consider is a bit-flip. Because the most
recent QEC in the concatenation was the three qubit bit-flip code, we immediately know
that we are protected from single bit-flips.

Now we’ll check phase-flips. Suppose |0〉 is encoded, and the first qubit is hit by σz.
The state is now (|000〉− |111〉)⊗ (|000〉+ |111〉)⊗2. The decoding takes place in two
steps. After the first step, we will have | −++〉, which the second step will correctly
transform to |0〉. Similarly, you can readily check that the action of σy does not change the
result after decoding, as long as only one qubit is hit.

3.3. Steane Code

The Shor code uses nine physical qubits to encode a single logical qubit; this section
describes a slightly less unwieldy code that uses only seven qubits for the same purpose.

The Steane code can be defined by the encodings

|0〉 →|0000000〉+ |1010101〉+ |0110011〉+ |1100110〉
+|0001111〉+ |1011010〉+ |0111100〉+ |1101001〉, and

|1〉 →|1111111〉+ |0101010〉+ |1001100〉+ |0011001〉
+|1110000〉+ |0100101〉+ |1000011〉+ |0010110〉.

That this code is robust against both bit-flip and phase-flip errors is a matter that can be
verified through straightforward, but tedious, algebra. Rather than trace that calculation,
let us see how the Steane code is derived.

15

3. Quantum Error Correction

The Steane code is derived from Hamming(7,4). Recall the generating matrix for that
code:

GT =

1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

.

The 24 = 16 valid codewords are obtained by multiplying GT m for any {0,1}-vector m.
We could, of course, construct a quantum code according to the rule |m〉 → |GT m〉; how-
ever, as with the three-qubit bit-flip code, we would be protected from bit flips but not
phase flips.

Instead, let’s introduce one more classical code, the dual code of Hamming(7,4). This
code has 8 codewords and is defined by having a generating matrix equal to the parity
check matrix of the original code:

GD =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 .

This code is termed the dual code because each codeword in GD is orthogonal to each
codeword in G: GDGT = 0. Moreover, GD is the largest such code with this property.
Every codeword which is orthogonal to G is a valid codeword generated by GD.

In this case, every codeword of the dual code is also a valid codeword of the original
code. You can prove this easily by verifying that every row of GD can be obtained as a
linear combination of rows of G.

For any valid codeword x in Hamming(7,4), we can define a quantum state

|x̄〉 ≡∑
y
|x+ y〉.

where the sum runs over all codewords y in the dual code defined by GD, and the addition
x+ y is performed modulo 2.

From this definition, it looks like there are 16 different quantum states |x̄〉 that have
been defined; however, the sum over codewords generated by GD means that they are not
all distinct. If x1− x2 is a valid codeword generated by GD, then |x̄1〉 = |x̄2〉. There are

16

3. Quantum Error Correction

Figure 5: The lattice used for the toric code. Figure taken from Kitaev’s original paper.

only two distinct quantum states constructed this way, and they are the two states used in
the Steane code above.

Now that we know how the Steane code is constructed, it’s possible to see without long
and tedious computation that both bit-flip and phase-flip errors are protected against. A
bit-flip error in the Z-basis yields

∑
y
|x+ y+ e〉= |x+ e〉,

which will be a valid state only if e is itself a valid codeword generated by G — that would
require at least three bit-flips to have occurred! A phase-flip error is only slightly harder
to analyze: the phase-flipped state

∑
y
(−1)e·(x+y)|x+ y〉

will be a valid codeword only if e is orthogonal to x+ y for all y generated by GD. This
requires that e have at least three bits on.

The Steane code is a specific example of a Calderbank-Shor-Steane code, a class of
codes derived in this manner from classical linear codes. The CSS codes, in turn, are a
subclass of the stabilizer codes discussed in 3.B below.

3.A. Toric Code

For some integer L, picture 2L2 qubits layed out in an L× L grid, such that each qubit
is associated to an edge of the grid. The grid is taken to be periodic, so that the top
edge is identified with the bottom, and the left edge with the right. (In other words, the

17

https://arxiv.org/abs/quant-ph/9707021

3. Quantum Error Correction

grid is placed on a two-dimensional torus — hence the name.) This situation is shown
in Figure 5. There are a total of 3L2 Pauli operators associated with this lattice, and
many more composite operators that can be constructed; for our purposes, there are three
families of composite operators of particular interest.

First, we have the “plaquette” operators P(r). These are associated to a small square on
the lattice; for convenience, we’ll label them by the name of the site (r) in the lower-right
corner of that square. The operator P is defined as the product of the four σz operators
going around that square:

P(r) = σz(r,r+ x̂)σz(r,r+ ŷ)σz(r+ x̂,r+ x̂+ ŷ)σz(r+ ŷ,r+ x̂+ ŷ).

Note that flipping a qubit along a link — that is, the action of σx — flips two neighboring
plaquettes, while leaving all other unaffected. It turns out that we can flip four qubits in
such a way as to leave all plaquettes unaffected. This is the action of the “star” family of
operators, S(r). The operator S(r) is associated to a site r, and has the effect of flipping all
edges that touch that site:

S(r) = σx(r,r+ x̂)σx(r,r+ ŷ)σx(r,r− x̂)σx(r,r− ŷ).

Because every plaquette that borders the site r gets two edges flipped, there is no overall
effect. The action of the star operator does not affect any plaquettes:

S(r)P(r′)S(r) = P(r′).

One last family of operators is of great interest. First, note that from the small loops
of the plaquette operator, we can construct operators corresponding to almost all larger
loops. For instance, the product of two adjacent plaquette operators P(r)P(r+ x̂) yields an
operator corresponding to the product of the 6 σzs going around a 2× 1 loop. However,
there is one sort of loop that cannot be obtained this way: a loop that winds itself all the
way around the lattice, coming back around to the original position. Two such loops are
shown in the figure. The associated operators, Zv and Zh, are products of σz operators
along the loops; one can also define X•, for instance, as the product of σx operators around
a loop. Note that these operators, too, are unaffected by the action of S(·), as each star
operator must flip two links in the loop.

We have selected only one vertical loop and one horizontal loop, out of many (far more
than L2!) possibilities. The choice of specific loops is arbitrary, but the decision to pick
only one in each direction is not. Any other horizontal loop, for instance, can be obtained
as a product of our chosen Zh and some plaquette operators.

18

3. Quantum Error Correction

The set of operators we’ve chosen is not “complete” — many operators, like σz(`) for
any edge `, cannot be constructed from products of operators chosen from these families.
However, we are particularly interested in operators that commute with the S(·) family,
and in fact the plaquettes and loop operators (once the σx and σy versions are included)
exhaust that list of operators. Every operator that commutes with S(·) can be obtained as
some product of P(·) and Z•, and their X- and Y -basis equivalents.

To summarize, we now have three families of operators (S(r), P(r), and Z•) acting
on a Hilbert space of 2L2 qubits. Both the P(·) and the Z• family commute with the star
operators, and in fact these are the only operators that do so. From this large set of physical
qubits, we will encode only two logical qubits. They will be encoded via the operators Zv
and Zh.

At the moment, this does not seem like a very useful idea. A single bit-flip error on any
link lying along Zv can change the value of Zv, so there is no protection from quantum
noise. To gain meaningful protection, let’s define a restricted subspace H0 ⊂H of the
original Hilbert space. This subspace will be the set of states |Ψ〉 obeying two laws:

S(r)|Ψ〉= |Ψ〉 and P(r)|Ψ〉= |Ψ〉.

Thinking in Z-basis, the first law can be interpreted as limiting us to the symmetric sub-
space of H , of states unaffected by S(r). The second law dictates that every plaquette
have an even number of flipped bits.

Remember that every operator that commutes with S(·) is obtainable as some combi-
nation of P(·) and Z•. That means that every operator that does not remove us from the
protected subspace H0 must be constructed as some combination of these operators. How-
ever, on this protected subspace, we have also required that P(·) leave all states unchanged.
As a result, the only non-trivial operators on this subspace are the loop operators X•, Y•,
and Z•. This is exactly enough to encode two qubits, and any other operation removes us
from the protected subspace and indicates an error.

An equivalent way to phrase this: within the protected subspace H0, there are exactly
four orthogonal states. One of these states corresponds to Zv = Zh = 0, one corresponds to
Zv = Zh = 1, and the other two correspond to one flipped qubit each.

How many bit-flips does it take to change the value of V , without removing us from
the protected subspace H0? The best we can do is to draw a horizontal line through the
lattice, and apply σx at every vertical edge that crosses this line. Thus, in the toric code, L
bit-flip errors are required to cause a logical flip.

The toric code’s performance is nothing remarkable, but its simple structure and physi-
cal interpretation make it a popular target for physical implementation.

19

3. Quantum Error Correction

The toric code is an example of a physical model called a gauge theory. Consider the
Hamiltonian

H = ∑
r

P(r)+∑
`

σx(`),

where the first sum ranges over all squares (taking the product of σz around the square)
and the second ranges over all edges. This Hamiltonian is unchanged under the action of
the star operator S defined above. Ordinarily, symmetries of physical systems are global:
we rotate the entire system by some amount, or flip all spins, for example. The symmetry
under S is a local symmetry, as there is one for each lattice site, and the operator does not
affect sites that are far away. This is termed a gauge symmetry, and the theory posessing it
a gauge theory. The local symmetry group here is Z2, other gauge theories with different
groups appear in the standard model7.

The Z2 gauge theory, in addition to being used in the toric code, has a very interesting
property. All lattice models have a notion of a correlation length: a distance scale at which
“typical” fluctuations occur. If you view the lattice at scales much larger than this length,
you will perceive only uncorrelated noise — each region is doing something random, with
no relation to each other. At scales much shorter than the correlation length, all spins are
aligned and nothing interesting is happening.

In the Z2 gauge theory, if the coupling constant g is tuned to just the right value, the
correlation length ζ blows up, becoming arbitrarily large. This means that if you try to
look at the lattice at the scale of a typical fluctuation, you have to “zoom out” very far.
This is tremendously valuable, because it suggests that when g is tuned in this way, the
geometry of the lattice is no longer relevant to the behavior of these fluctuations. In this
way, a discrete lattice can serve as a good approximation to a continuous space.

3.B. Stabilizer Codes

A key aspect of the discussion of the toric code above was the idea that we could specify
certain operators under which a state was unchanged (like S(·)|Ψ〉 = |Ψ〉), and thereby
dramatically restrict or even uniquely identify the state. A couple additional examples are
in order. If we have one qubit, and the state in question obeys X〈Ψ|= 〈Ψ|, then the state
must be |Ψ〉 = |0〉+ |1〉. We say that the operator X stabilizes the state |Ψ〉. Similarly,

7The gauge theories that appear in the standard model have continuous gauge groups: electromagnetism is
described by a U(1) gauge field, the weak force by SU(2), and the strong nuclear force by SU(3).

20

3. Quantum Error Correction

with two qubits, if a state is stabilized by X1X2 and Z1Z2, then the state must be the EPR
(Einstein-Podolsky-Rosen) state |00〉+ |11〉.

In general, given a set S of operators, the set of states VS stabilized by S must form a
linear subspace of the original vector space V . Note also that if S1,S2 ∈ S both stabilize VS,
it follows that S1S2 and S2S1 stabilize VS. The set of stabilizers, in other words, is closed
under multiplication (and therefore forms a group).

Because we’re working with qubits, it is sensible to require the elements of S to be
selected from the n-qubit Pauli group. For one qubit, the Pauli group has 16 operators

G = {±1,±i,±X ,±iX ,±Y,±iY,±Z,±iZ}

For n qubits, the Pauli group has 24n operators.
Every pair of operators g,h ∈ G either commute, obeying gh = hg, or anticommute,

obeying gh = −hg. If we allow two anticommuting operators g,h into the stabilizer S,
then VS will be trivial, since the only state obeying v =−v is v = 0. Therefore, the in order
for VS to be interesting, S must consist only of some commuting subset of G. (In other
words, S is an abelian subgroup S < G.)

We say that the group S has m generators if m elements g1, . . . ,gm ∈ S can be found such
that any h ∈ S can be expressed as a product of the gs, and if this cannot be done with any
fewer than m elements. The one-qubit Pauli group itself has three generators, which can
be chosen to be X ,Y,Z.

Every commuting generator that we add to S cuts the dimension of the stabilized sub-
space by a factor of two. Starting from n physical qubits, we can obtain a 2k-dimensional
VS by selecting n− k commuting generators from the Pauli group. This defines a code
C(S): states in V (S) will be the valid codewords, and any state outside that subspace will
indicate an error. Both the toric code and the nine-qubit code above are special cases of
such stabilizer codes.

3.C. Gottesman-Knill Theorem

The motivation for quantum computers is the promise that they can perform certain com-
putations more efficiently than classical computers. In fact, for certain problems (notably
factoring products of large primes), quantum computers are believed to provide an expo-
nential speedup over classical computers, meaning that where a classical computer might
take time O(en) where n is a measure of the size of the problem, a quantum computer
requires only O(na) steps for some a > 0. (Often, but not always, a is a small integer.)

21

3. Quantum Error Correction

If we believe that quantum computers do have such an exponential speed-up, it follows
immediately that simulating a quantum computer on a classical computer must be hard.
Indeed, no efficient algorithms for this task are known. However, if the class of permitted
quantum circuits is restricted, then some efficient algorithms are known. For example, if
we allow only controlled-not and Toffoli (controlled-controlled-not) gates, then the quan-
tum circuit is just a classical circuit in disguise, and efficient simulation becomes trivial.

A broader class of efficiently simulable circuits is given by the Gottesman-Knill theo-
rem: “Clifford circuits”. A Clifford circuit consists only of the following elements:

• Preparation of states in the Z-basis

• The Hadamard gate H

• The phase gate S = eiZ π

4

• Controlled-not gates

• Measurement of Pauli operators

Note that the Pauli gates X ,Y,Z are implicitly included, as they can be obtained by com-
binations of H and S.

A naive attempt at simulating a quantum computer with n qubits would proceed by
storing a 2n component complex vector, and updating it for every gate that is applied.
Because each of the 2n complex numbers will need to be updated for every gate that is
applied, this requires exponential time in the number of qubits. For general circuits, this is
close to optimal8.

In the case of Clifford circuits, we can do better by keeping track only of the group S
that stabilizes the current state. Although this group has exponentially many elements, it
only has polynomially many generators. The task of updating these generators can also be
done in polynomial time. The Gottesman-Knill theorem presents such an algorithm.

8There is a tradeoff between space and time — this algorithm is as fast as possible, but uses much more
space than some other algorithms, which use more time.

22

4. Fault-Tolerance and Thresholds

4. Fault-Tolerance and Thresholds

Be conservative in what you send; be liberal in what you accept.

(Jon Postel)
So far we have only considered the problem of storage (or equivalently, transmission)

of qubits. Ultimately, the goal is to perform quantum computations in a way that ensures
errors are not introduced during the computation. As we will see, this requires actually
operating on encoded qubits without decoding them (which would allow errors to leak in
while they are unprotected).

As circuits get longer, there are more opportunities for errors to occur. For a fixed error-
correction scheme and quality of physical qubits, there is an upper bound on the circuit
length, above which errors become impractically frequent. At first glance, this suggests
that truly “universal” quantum computers, able to run any circuit (given sufficient time),
might be forbidden by the laws of physics. Fortunately, there is an escape hatch. Rather
than asking for a single error correction scheme to solve them all, we can have a sequence
of error correction schemes, each appropriate for larger families of circuits. Thus, given a
circuit, we could pull up an error correction scheme that allows us to run circuits of that
size.

It turns out that this is possible. A central point of this section is to convince you of the
following theorem: if the probability of errors on physical gates is sufficiently small (p <
pth for some threshold value pth which is independent of the circuit), then for any desired
logical circuit and desired error rate ε , there is an fault-tolerant implementation of that
logical circuit with logical error rate below ε . Moreover, this can be done with overhead
which is only polylogarithmic in the size of the original circuit. Results of this form are
called “threshold theorems”, and exist for both classical and quantum computation.

Some aspects of this theorem are underspecified. What class of gates? What sorts of
errors are considered? In fact a cluster of closely related theorems along this line have
been proven. The general idea is fairly robust to details of how the terms are defined,
although Section 4.4 below will show how sufficiently large changes to the noise model
can break the threshold theorem altogether.

Perhaps the most interesting part of this theorem is that, for any given noise model, the
best value of pth is not known. Each proof of a threshold theorem provides some lower
bound for pth, at least under some specific noise model.

23

4. Fault-Tolerance and Thresholds

Figure 6: A failed attempt at classical fault-tolerance. On the left is the circuit we seek to
make fault-tolerant, consisting of an AND gate followed by a NOT gate. On the
right, the circuit has been transformed using the triple repetition code. Errors
can still leak in, with probability proportional to the original error probability,
along any wire marked with a dashed red line.

4.1. Classical Fault-Tolerance

The general idea of fault-tolerance is visible already in classical computing9. We have
some circuit, perhaps the one shown in the left panel of Figure 6, and we would like to
reduce the errors in this circuit using an error-correcting code.

For concreteness, we’ll use the triple repetition code in this section. The most obvious
guess for an error-corrected circuit is shown on the right side of Figure 6. Each gate is
sandwiched by a decoding/encoding pair, so that gates act on logical bits, but bits are
protected by error-correction when not being used.

For any reasonable noise model, this method is not effective. The gates being used
at the core of the original circuit are certain to introduce errors themselves, and nothing
has been done to reduce those errors. In fact, if we neglect errors that occur when bits
are being ‘stored’, then this error correction scheme has made no improvement. On the
contrary, errors are much worse now, because we’ve added many more gates in order to
do the encoding/decoding!

From this example, it is apparent that new gates must be constructed which act directly
on encoded bits; otherwise, the processes of encoding and recoding introduces more errors
than it removes. Many classical gates are used in practice; however, we will demonstrate

9In general, this method is not actually used in classical computing. It’s possible to get errors in classical
circuits down to very low levels just by careful hardware design, so fault-tolerant circuits of the sort we
discuss here don’t appear.

24

4. Fault-Tolerance and Thresholds

Figure 7: A fault-tolerant implementation of the NAND gate. Critically, no decoding is ever
performed, so there are no vulnerable wires.

the idea of a fault-tolerant gate implementation just on the NAND gate:

a b NAND(a,b)
0 0 1

0 1 1

1 0 1

1 1 0

It turns out the NAND gate is universal, meaning that every other circuit can be built just
from NAND gates. As a result, this demonstration is sufficient to show that arbitrary classical
circuits can be made fault-tolerant.

A fault-tolerant implementation of the NAND gate is shown in Figure 7. The construction
is as simple as possible: the bits of the two inputs are paired off, and the NAND gate is
applied to each pair independently. A bit flip, anywhere in the circuit, can only affect
one bit of the output. Thus, if the original inputs were each either 000 or 111, then after
only a single bitflip, the output will decode to the correct answer (although it might be any
bitstring).

4.2. Classical Thresholds

The construction of the previous subsection reduces the probability of an uncorrected error
from ∼ p to ∼ p2. For very large circuits, this may still be unacceptably large. In fact,
if we’re limited to ∼ p2, this places an upper-bound on the size of a circuit that we can
ever run. Aside from being a practical pain point, this is of great theoretical concern, as
it means that we haven’t constructed a true “universal Turing machine” — there are some
programs that we can never run, no matter how long we’re willing to take.

25

4. Fault-Tolerance and Thresholds

Fortunately, it is possible to get the probability of an uncorrected error to be arbitrarily
small, provided that the physical error probability p is not too large. The core trick is
concatenation, which we saw in the previous section. One iteration of error correction
transforms a circuit with error probability ∼ p to one with error probability ∼ p2. If
we then repeat the error-correction transformation on this (already once-error-corrected)
circuit, the result has a failure probability ∼ p4. We can continue the concatenation to get
this error arbitrarily small. The main cost is that we require ever-more physical qubits,
which may be expensive to construct.

That quick analysis is a bit heuristic, and we never quantified the condition that “p is not
too large”. For concreteness and simplicity, assume that errors are only ever introduced
when gates act on bits: there is no corruption of bits that are just sitting in storage. Fur-
thermore, our fault-tolerant circuit transformation takes a gate with error probability p and
transforms it to a small circuit with error probability ap2. Concatenating the fault-tolerant
construction n times, then, yields a circuit with error probability L

a (ap)2n
, where L is the

number of gates in the original circuit.
Now we must distinguish two cases. If ap < 1 (by any amount10), then making n larger

lowers the error probability. If, however, ap > 1, making n larger actually makes things
work. We call pth ≡ a the threshold.

Another way to phrase this result is as follows. Suppose we have a circuit of L gates,
and we want to obtain a fault-tolerant version with an error probability below ε . In order
to do this, we must concatenate n times, with

n≥ log2

(
log εa

L
logap

)
.

Of particular interest, if we’re interested in ensuring that we can implement arbitrarily
large circuits with a minimum of overhead, is how slowly n grows as a function of L, for
fixed p, ε , and a. The above equation indicates that n∼ log2 logL.

How large will this make our error corrected circuits? The size of a fault-tolerant circuit
grows exponentially — but singly exponentially — with n. As a result we find that the
size of the fault-tolerant circuit, with n concatenations (enough to get the error probability
below ε), grows as Lpoly(logL). Thus the overhead from this sort of error correction is
only polylogarithmic in the size of the circuit. Asymptotically, at least, this scheme is
everything we could ever hope for.

10Remember that our model of noise was incredibly simplistic, so this sort of crude estimate of the threshold
is likely to be optimistic.

26

4. Fault-Tolerance and Thresholds

In practice, a lot of hard work is hiding in the word “asymptotically”. Present-day
quantum processors do not obtain p < pth. Until the threshold is achieved, this construct
is of no practical use.

4.3. Quantum Fault-Tolerance

The central principle of quantum fault-tolerance is the same as that of classical fault-
tolerance: we must apply gates to encoded qubits without ever performing a decoding.
However, in the quantum case, several complications arise. Most obviously, interference
can occur between different qubits in a code. Consider, for instance, the π

8 gate T :

T =

(
e−iπ/8 0

0 eiπ/8

)
.

We will attempt to implement this in a fault-tolerant way on the three-qubit bit-flip code11.
An obvious first guess is to apply T to each qubit separately. However, assuming no errors
occur, this results in a total phase of ei 3π

8 , thus implementing the wrong gate. A similar
issue occurs if we attempt to implement the Hadamard gate with the same strategy:

|000〉 H⊗3
−−→(|0〉+ |1〉)(|0〉+ |1〉)(|0〉+ |1〉)

=|000〉+ |001〉+ |010〉+ |011〉+ · · ·
6=|000〉+ |111〉.

Of course, this issue does not occur with all one-qubit gates. In this case, a fault-tolerant
X gate really can be constructed as X⊗3.

A less obvious, but more severe, issue is that a poorly designed fault-tolerant gate may
make pre-existing errors worse. If a one-qubit error occurs early in a circuit, then some
later gate may entangle this qubit with another, resulting in a two-qubit gate. Importantly,
this does not require the later gate to have any errors at all. The one-qubit error is expanded
into a two-qubit error despite the fact that only one (one-qubit) error ever occured.

This second issue can be mitigated, in some cases, by transversal gates. A transversal
gate is a fault-tolerant gate implemented by performing an operation on each qubit inde-
pendently. For instance, the obvious fault-tolerant implementation of X , in which X is

11This is only for demonstration purposes. Because this code does not protect us from phase errors, we
should not expect a phase gate to be implementable in a fault-tolerant way.

27

4. Fault-Tolerance and Thresholds

•
•

•

Figure 8: The controlled-NOT gate, implemented on the three-qubit bit-flip code. Because
the circuit is transversal, a single error going in results in only a single error
going out (assuming no additional errors occur in the circuit itself).

applied independently to each qubit in the three-qubit bit-flip code, is transversal. Because
this gate never operates on two qubits at once, errors have no opportunity to expand (just
as in the classical case).

Another case of a transversal gate is a fault-tolerant CNOT gate, again implemented on
the three-qubit bit-flip code. This is shown in Figure 8, and follows exactly the same
scheme one would use in the classical case. This idea generalizes to the Toffoli gate, and
any gate which is a permutation matrix in the Z-basis. This is true not only for the three-
qubit bit-flip code, but for a large class of QECs called Calderbank-Shor-Steane codes,
which are derived from the clasical linear codes.

Once a method for constructing fault-tolerant circuits is obtained, it can be concatenated
with itself to yield further improvements. The logic of Section 4.2 needs no modification
for the quantum case.

4.4. Model-Dependence

In the analysis of Section 4.2, we assumed that errors were only introduced at gates, and
that there was only one type of gate. This serves to illustrate the idea behind the threshold
theorems, but is not a very realistic error model. Performing the same task with realistic
models is tedious and yields the same qualitative result (polylogarithmic overhead), so we
won’t perform such an analysis here. However, it is possible to construct a (non-realistic)
noise model under which this sort of threshold theorem does not hold.

First, instead of having errors occur only when gates are applied, let’s have errors occur
also when (qu)bits are sitting in storage. This is in fact the case12! In addition, and much

12Even classical bits are likely to encounter errors this way. Although it sounds like a joke, the phenomenon

28

4. Fault-Tolerance and Thresholds

less realistically, let us forbid ourselves from running gates in parallel. The gates must
operate in sequence, and so the amount of time for errors to be introduced is proportional
to the number of gates13.

Remember that with n concatenations, we have a circuit of length bn for some constant
b. If all operations are performed in sequence, this means that the probablity of error in a
single physical gate is not p, but ∼ pbn. There is now no p which is “sufficiently small”:
for any p, there’s an L such that the required concatenation length n implies that pbn > 1,
and error correction is now useless.

Happily, this is an absurd model of noise, since in the real world we allow gates to
execute in parallel all the time.

of cosmic rays flipping bits in RAM is considered by some to be a real security concern, exploited in
part by “bitsquatting”. Other sources of noise may be more realistic, of course.

13This may sound reasonable by analogy with the many classical computers which have only a single CPU.
You must remember that even a classical computer with a single CPU is running many gates at a time
(some in the CPU, some in RAM, some elsewhere). Requiring that the gates execute in sequence is
much stronger than requiring that large-scale logical operations, like addition, execute in sequence.

29

A. Bits and Qubits

A. Bits and Qubits

A.1. A Bit of Linear Algebra

There is hardly any theory which is more elementary [than linear algebra],
in spite of the fact that generations of professors and textbook writers have
obscured its simplicity by preposterous calculations with matrices.

(Jean Dieudonné)
A vector space is a set (of vectors) equipped with two operations: addition of two

vectors, and scalar multiplication by a complex number14. Addition is commutative (u+
v = v+ u) and associative (u+(v+w) = (u+ v)+w), as usual. Scalar multiplication is
associative (a(bu) = (ab)u) and distributes over both vector addition (a(u+ v) = au+av)
and scalar addition ((a + b)u = au + bu). Finally, scalar multiplication by 1 does not
change the vector (1v = v) and multiplication by 0 yields the unique zero-vector.

Just as the concept of a set is not very useful without the idea of a function, a vector
space is fairly pointless without linear operators. A linear operator M on a vector space
V is a function that takes a vector v ∈ V and returns another, Mv. This function must be
linear, meaning that M(au+bv) = aMu+bMv, for all vectors u,v and scalars a,b.

For the purposes of quantum mechanics, we need to add a little bit of extra structure to
our vector space. An inner product space is a vector space that comes equipped with an
inner product (often introduced as a “dot product”). The inner product between two vectors
u,v returns a scalar (a complex number), and is denoted15 〈u,v〉. The inner product is linear
in both arguments, is Hermitian (〈u|v〉= 〈v|u〉∗), and is positive-definite (〈v|v〉 ≥ 0 for any
non-zero v).

The existence of an inner product allows us to define a norm — a notion of the “length”
of a vector. The norm of a vector v is defined to be |v|=

√
〈v,v〉.

A Hilbert space H is an inner product space with the extra restriction that that the space
is complete, meaning that if a sequence of vectors v1,v2, . . . get arbitrarily close to each
other, then the limit limk→∞ vk exists. This is automatically true for finite-dimensional
inner product spaces. This requirement is not often used in physics; nevertheless, it is
conventional to refer to “the Hilbert space” of states even when the completeness axiom is
irrelevant.

14In fact vector spaces can be defined over any field, as noted in Section 1.A, but the interesting ones in
quantum mechanics are all over C.

15In the context of quantum mechanics 〈u|v〉 is more traditional. There, a vector is written |v〉 or 〈v|.

30

A. Bits and Qubits

In the case of a finite-dimensional inner product space, the “usual” formulation in terms
of a list of numbers can be recovered by selecting a maximal set of orthonormal vectors
e1, . . . ,eN . Any other vector v is uniquely determined by its inner products vi = 〈ei,v〉.
Those inner products can be treated as the N components of v.

An important piece of intuition about many vector spaces, including all those used in
these notes, is the idea of the dimension of a vector space. A basis of a vector space is
a list of vectors e1,e2, . . ., such that every vector v can be written in a unique way as a
linear combination a1e1 + a2e2 + · · · = v. If there are a finite number d of basis vectors,
the vector space is said to be d-dimensional. If the vector space is equipped with an inner
product, the basis vectors can always be chosen to be orthogonal, so that 〈ei,e j〉= 0 when
i 6= j.

Two special classes of operators are particularly relevant to physics. First, the Hermitian
operators are those operators H obeying 〈u,Hv〉= 〈Hu,v〉. This implies, for instance, that
〈v,Hv〉 is real. Written as a matrix, taking the transpose of H followed by the complex
conjugate of all elements yields the same matrix back again: H† = H.

A unitary operator U is one whose adjoint is its own inverse, U†U = 1. It follows that
U preserves the inner product, obeying 〈Uv1,Uv2〉= 〈v1,v2〉.

The Hermitian operators and the unitary operators are closely related. Define the matrix
exponential of an operator M as

expM ≡∑
k

1
k!

Mk.

For any unitary U , the exponential exp iU is always Hermitian.
This mathematical correspondence has a simple physical interpretation. Hermitian oper-

ators correspond to “observables” — physical quantities that can be measured to describe
the state of a system. Because the energy of a system can be measured, the energy of a
system must be described by a Hermitian operator, termed the Hamiltonian. Unitary op-
erators, meanwhile, correspond to legal sorts of time-evolution (like the application of a
quantum circuit). Time-evolution operators are obtained by exponentiating the Hamilto-
nian. The requirement that time-evolution be unitary is equivalent to the requirement that
the Hamiltonian be Hermitian.

A nice exercise in linear algebra is to prove the no-cloning theorem:

No-Cloning Theorem. Let H be a Hilbert space of dimension at least 2, and |0〉 some
fiducial state in that space. No unitary operator on H ⊗H obeys, for all |Ψ〉, U |Ψ〉|0〉∝

|Ψ〉|Ψ〉.

31

A. Bits and Qubits

This theorem states that there’s no quantum operation we can perform to take the state
of one qubit and duplicate it in another qubit. This is an unfortunate but fundamental
property of quantum computation.

Proof. Let |Ψ〉, |Φ〉 ∈H be two orthogonal states, and suppose we have some unitary U
that obeys the cloning property on these two states:

U |Ψ〉|0〉 ∝ |Ψ〉|Ψ〉 and U |Φ〉|0〉 ∝ |Φ〉|Φ〉.

Since U is linear, we know how U acts on linear combinations. For example, we have

U(|Ψ〉+ |Φ〉)|0〉 ∈ span
{
|Ψ〉|Ψ〉, |Φ〉|Φ〉

}
.

But, the desired result (|Ψ〉+ |Φ〉)⊗2 does not lie in this two-dimensional space! The
difference between the two is |Ψ〉|Φ〉+ |Φ〉|Ψ〉, which is in fact orthogonal to that space
since Ψ and Φ were chosen to be orthogonal at the beginning.

A.2. The Density Matrix

If I tell you that a qubit is in the state |+〉, then there’s some uncertainty about what will
happen when the qubit is measured in the Z-basis. The result will be either 0 or 1, and
with equal probability. Importantly, this uncertainty does not correspond to any uncertainty
about what state the qubit is in. The qubit is definitely in the state |+〉= |0〉+ |1〉. Only the
result of the measurement is uncertain. (Furthermore, not all measurements have uncertain
results. A measurement in the X-basis is sure to yield 0.)

A different source of uncertainty commonly appears in classical physics. I might have
a bit, and tell you that the state is either 0 or 1, but I don’t know which. We represent this
situation with a probability distribution, p(b), with p(0) = p(1) = 1

2 . This is superficially
similar to the quantum uncertainty above, but is really fundamentally different. This un-
certainty represents information about the world that we don’t have: the bit definitely is
either 0 or 1, we just don’t know which.

What happens if these two types of uncertainty exist simultaneously? For instance, I
could have a qubit that I know is either in the state |0〉 or the state |+〉, and with equal
probability. Now there is some information about the state that we don’t have, but also,
even if we did have that information, measurements would still not have deterministic
results! In principle, we should represent this situation by a probability distribution on the

32

A. Bits and Qubits

space of ‘pure’ (i.e. classically certain) states. It turns out that there’s a much simpler way
to represent these ‘mixed’ (classically uncertain) states, termed a density matrix.

Classical uncertainty is, in some sense, fundamentally linear. The expectation value of
any observable O is given by

〈O〉= ∑
s

p(s)O(s),

where the sum is taken over all states s, p(s) is the probability of that state, and O(s) is
the value of that observable in the state s.

This is a nice property that, at first glance, quantum mechanics does not share. An
expectation value of O in the state |ψ〉 is

〈ψ|O|ψ〉= ∑
v,w

ψ
†
wψvOwv.

This is quadratic in the wavefunction, not linear. Linearity is never conceptually neces-
sary, but is always convenient. We can improve the situation by thinking, instead of the
wavefunction, about the operator |ψ〉〈ψ|. Now the expectation value can be written

〈ψ|O|ψ〉= Tr |ψ〉〈ψ|O .

The magic here is that we’re now going to treat the operator |ψ〉〈ψ| (which is itself non-
linear in the wavefunction) as the fundamental object, rather that the wavefunction.

Now we’re able to easily accomodate classical uncertainty. If the system is in either
state |ψ1〉 or |ψ2〉 with equal probability, then the expectation value of any operator O is
given by

〈O〉= 1
2

[
Tr |ψ1〉〈ψ1|O +Tr |ψ2〉〈ψ2|O

]
= Tr

(
|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|

2

)
︸ ︷︷ ︸

ρ

O .

The object ρ is the density matrix; it is formed simply by taking a linear combination of
the two matrices coming from pure states.

The density matrix ρ contains enough information to compute the expectation value of
any observable. Usefully, though, it has far less information than a probablity distribution
on the space of states would. For example, a system which is in state |0〉 or |1〉 with equal
probability is described by the density matrix

ρ =

(1
2 0
0 1

2

)
.

33

A. Bits and Qubits

A short computation will reveal that the same matrix describes a system which is in state
|+〉 or |−〉 with equal probability. There is no measurable difference between these sce-
narios!

34

B. Further Reading

B. Further Reading

This is a great book. Out of respect, I’ve never opened it.

(Paulo Bedaque)

B.1. Pedagogical

The canonical text for all things quantum computing is Nielsen and Chuang’s textbook,
“Quantum Computation and Quantum Information”. Many copies are available online,
such as this one. Chapter 10 of that book is most relevant to these lectures.

Classical Error Correction
I like this introduction by Matej Boguszak. Those notes are based on Baylis’s book “Error
Correcting Codes: A Mathematical Introduction”.

Less formal is 3Blue1Brown’s video.
Most introductions to quantum error correction (like this one!) begin with a brief over-

iew of relevant aspects of classical error correction. Thus, any article on quantum error
correction in the section below is also as an introduction to classical error correcting codes.

Quantum Error Correction
Steane’s tutorial discusses quantum error correction but not fault-tolerance. This article by
Devitt et al., and Gottesman’s introduction, both discuss fault-tolerance as well. Finally,
Preskill has an article focusing on fault-tolerance.

B.2. Classic Papers

Classical Error Correction
Classical error correcting codes existed before 1950, but Hamming’s paper in that year
layed more careful foundations for the field.

A classical threshold theorem (probably the first of its type) was proven around 1956
by von Neumann. I cannot find a canonical reference, but these notes were made from a
series of lectures he gave.

Quantum Error Correction
The toric code was invented by Kitaev in 1997.

The threshold theorem began in a paper of Peter Shor, and was independently developed
by three groups: Knill et al, Aharanov and Ben-Or, and Kitaev.

35

http://csis.pace.edu/~ctappert/cs837-19spring/QC-textbook.pdf
http://orion.towson.edu/~mzimand/ainternetalg/ErrorCorrectingCodes-Tutorial.pdf
https://www.youtube.com/watch?v=X8jsijhllIA
https://www2.physics.ox.ac.uk/sites/default/files/ErrorCorrectionSteane06.pdf
https://arxiv.org/abs/0905.2794
https://arxiv.org/abs/0904.2557
https://arxiv.org/abs/quant-ph/9705031
https://ineffectivetheory.com/edu/papers/hamming-codes-1950.pdf
https://static.ias.edu/pitp/archive/2012files/Probabilistic_Logics.pdf
https://arxiv.org/abs/quant-ph/9707021
https://doi.org/10.1109%2FSFCS.1996.548464
https://arxiv.org/abs/quant-ph/9702058
https://arxiv.org/abs/quant-ph/9906129
https://arxiv.org/abs/quant-ph/9707021

	Classical Error Correction
	Hamming Codes
	Other Types of Errors
	Theory of Linear Codes

	Quantum Errors
	Examples of Errors
	Independent Errors

	Quantum Error Correction
	Three-Qubit Codes
	Shor Code
	Steane Code
	Toric Code
	Stabilizer Codes
	Gottesman-Knill Theorem

	Fault-Tolerance and Thresholds
	Classical Fault-Tolerance
	Classical Thresholds
	Quantum Fault-Tolerance
	Model-Dependence

	Bits and Qubits
	A Bit of Linear Algebra
	The Density Matrix

	Further Reading
	Pedagogical
	Classic Papers

