Quantum Simulation of Gauge Theory

Scott Lawrence

with Henry Lamm and Yukari Yamauchi (NuQS Collaboration) Based on 1806.06649 and 190x.xxxxx

26 February 2019

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Overview

Overview of quantum algorithms

Simulations of field theories

Simulating D_4 gauge theory

Quantum Chromodynamics

Lattice **QCD**

$$Z = \int_{SU(3)} \mathrm{d}U \ e^{-\int L}$$

Lattice **QCD**

$$Z = \int_{SU(3)} \mathrm{d}U \ e^{-\int L}$$

But we can't do...

- Scattering (real-time evolution via e^{-iHt})
- Finite fermion density (sign problem)
- Viscosity (real-time evolution)

Lattice **QCD**

$$Z = \int_{SU(3)} \mathrm{d}U \ e^{-\int L}$$

But we can't do...

- Scattering (real-time evolution via e^{-iHt})
- Finite fermion density (sign problem)
- Viscosity (real-time evolution)

Quantum computers promise all this!

From Bit to Qubit

|0
angle , |1
angle ...

From Bit to Qubit

This is a spin from QM.

A Quantum Computer

Physically, there's a Hilbert space:

 $\mathcal{H}=\mathcal{H}_1\otimes\mathcal{H}_1\otimes\cdots$

When we measure, we collapse into one of the 2^N states in the "fiducial basis".

 $|\Psi\rangle \rightarrow |0101010\rangle$

Gates

Arbitrary one-qubit gates are 'easy' – can be constructed from Hadamard and $\frac{\pi}{8}$ -gate.

$$H=rac{1}{\sqrt{2}} egin{pmatrix} 1&1\ 1&-1 \end{pmatrix}$$
 , $T=egin{pmatrix} e^{\pi/8}&0\ 0&e^{-\pi/8} \end{pmatrix}$

Gates

Arbitrary one-qubit gates are 'easy' – can be constructed from Hadamard and $\frac{\pi}{8}$ -gate.

$$H=rac{1}{\sqrt{2}} egin{pmatrix} 1&1\ 1&-1 \end{pmatrix}$$
 , $T=egin{pmatrix} e^{\pi/8}&0\ 0&e^{-\pi/8} \end{pmatrix}$

Controlled-not (CNOT) is a 2-qubit gate.

 $egin{aligned} |00
angle &\mapsto |00
angle \ |01
angle &\mapsto |01
angle \ |10
angle &\mapsto |11
angle \ |11
angle &\mapsto |10
angle \end{aligned}$

Gates

Arbitrary one-qubit gates are 'easy' – can be constructed from Hadamard and $\frac{\pi}{8}$ -gate.

$$H=rac{1}{\sqrt{2}} egin{pmatrix} 1&1\ 1&-1 \end{pmatrix}$$
 , $\ T=egin{pmatrix} e^{\pi/8}&0\ 0&e^{-\pi/8} \end{pmatrix}$,

Controlled-not (CNOT) is a 2-qubit gate.

 $egin{aligned} |00
angle &\mapsto |00
angle \ |01
angle &\mapsto |01
angle \ |10
angle &\mapsto |11
angle \ |11
angle &\mapsto |10
angle \end{aligned}$

 $T \equiv \mathcal{R}_{\pi/4}$

What is a classical computer?

A quantum computer constantly being measured in the fiducial basis.

$$|01\rangle\,$$
 is okay — $[|00\rangle+|11\rangle]\,$ is not

A quantum computer constantly being measured in the fiducial basis.

$$|01
angle$$
 is okay — $[|00
angle+|11
angle]$ is not

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Classical Algorithms Are Quantum Algorithms

Any classical circuit can be made into a quantum circuit!

Example: two-bit adder

 $\begin{array}{l} \left| 00 \right\rangle \left| 00 \right\rangle \rightarrow \left| 00 \right\rangle \left| 00 \right\rangle \\ \left| 01 \right\rangle \left| 00 \right\rangle \rightarrow \left| 01 \right\rangle \left| 01 \right\rangle \\ \left| 10 \right\rangle \left| 00 \right\rangle \rightarrow \left| 10 \right\rangle \left| 01 \right\rangle \\ \left| 11 \right\rangle \left| 00 \right\rangle \rightarrow \left| 11 \right\rangle \left| 10 \right\rangle \end{array}$

In general, given a classical function f(x), we can implement:

 $\ket{x}\ket{0} \rightarrow \ket{x}\ket{f(x)}$

Inverting Circuits

$$(AB)^{-1} = B^{-1}A^{-1}$$
$$-H + T^{\dagger}$$
$$-T + H + H$$

As long as we have the inverse of each individual gate...

Inverting Circuits

$$(AB)^{-1} = B^{-1}A^{-1}$$
$$-H + T^{\dagger}$$
$$-T + H + H$$

As long as we have the inverse of each individual gate...

Easy version of real-time evolution: $U(t) = e^{-iHt}$, with H diagonal.

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{-i\theta} \end{pmatrix}$$
$$|11\rangle \rightarrow e^{-i\theta} |11\rangle$$
$$|0\rangle \longrightarrow \mathcal{R}_{\theta} \longrightarrow$$

Goal: e^{-iHt}

$$e^{-i(H_1+H_2)\epsilon} \approx e^{-iH_1\epsilon}e^{-iH_2\epsilon}$$

- 1. Split H into tiny pieces
- 2. Diagonalize each piece
- 3. Hit with phase gates

Goal: e^{-iHt}

$$e^{-i(H_1+H_2)\epsilon} \approx e^{-iH_1\epsilon}e^{-iH_2\epsilon}$$

- 1. Split H into tiny pieces
- 2. Diagonalize each piece
- 3. Hit with phase gates

On a classical computer: $2^N \times 2^N$ matrices.

On a quantum computer: N qubits and $\propto t/\epsilon$ gates.

Example: Coupled Spins

 $H = \overbrace{\sigma_z(1)\sigma_z(2)}^{H_V} + \overbrace{\mu(\sigma_x(1) + \sigma_x(2))}^{H_K}$

Example: Coupled Spins

$$H = \overbrace{\sigma_z(1)\sigma_z(2)}^{H_V} + \overbrace{\mu(\sigma_x(1) + \sigma_x(2))}^{H_K}$$

$$e^{-iHt} \approx \left(e^{-iH_V\epsilon}e^{-iH_K\epsilon}\right)^{t/\epsilon}$$

 H_V is diagonal!

$$egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & e^{i\epsilon} & 0 & 0 \ 0 & 0 & e^{i\epsilon} & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

 H_K is diagonalized by the Hadamard gate.

$$-H - \mathcal{R}_{\epsilon} - H -$$
$$-H - \mathcal{R}_{\epsilon} - H -$$

Real-Time Evolution for Nonlinear Response

$$|\Psi\rangle \rightarrow e^{-iH_0T} |\Psi\rangle \rightarrow e^{-i(H_0+H_B)t} e^{-iH_0T} |\Psi\rangle \rightarrow \mathsf{Measure!}$$

Real-Time Evolution for Nonlinear Response

$$|\Psi\rangle \rightarrow e^{-iH_0T} |\Psi\rangle \rightarrow e^{-i(H_0+H_B)t} e^{-iH_0T} |\Psi\rangle \rightarrow \text{Measure}!$$

This gives $\langle \mathcal{O}(t) \rangle$. What about $\langle \mathcal{O}(t) \mathcal{O}(0) \rangle$?

Want linear response? Take a derivative!

Real-Time Evolution for Linear Response

Want linear response? Take a derivative!

$$H(t) = H_0 + \epsilon \delta(t) H'$$

- 1. Evolve briefly with $H' = \mathcal{O}$. $e^{-i\mathcal{O}\epsilon} |\Psi\rangle$
- 2. Perform normal time-evolution. $e^{-iH_0t}e^{-i\mathcal{O}\epsilon}\left|\Psi\right\rangle$
- 3. Measure \mathcal{O} .

$$\frac{\partial}{\partial \epsilon} \left\langle e^{iHt} \mathcal{O} e^{-iHt} \right\rangle = \operatorname{Im} \left\langle \mathcal{O}(t) \mathcal{O}(0) \right\rangle$$

Alternatives include: Roggero and Carlson 1804.01505; Pedernales et al. 1401.2430.

Parton Distribution Functions

$$f_q(\xi) = \int_{\infty}^{\infty} \frac{\mathrm{d}t}{2\pi} e^{-it\xi(n\cdot P)} \langle P | \bar{\psi}_q(tn^{\mu}) \frac{\hbar}{2} W_n \psi_q(0) | P \rangle$$

15 / 38

Naive method: couple to a large thermal bath.

$$H = H_0 + H_{\rm bath} + H_{\rm int}$$

If $H_{\rm bath}$ is well-understood (easily arranged), we can prepare it cold, and then time-evolve.

Naive method: couple to a large thermal bath.

$$H = H_0 + H_{\rm bath} + H_{\rm int}$$

If $H_{\rm bath}$ is well-understood (easily arranged), we can prepare it cold, and then time-evolve.

More sophisticated: Spectral Combing (1709.08250), Quantum Adiabatic Algorithm (quant-ph/0001106) both require e^{-iHt} .

Hybrid classical/quantum methods don't: 1806.06649.

The Hamiltonian of a free particle moving on G = SU(3):

$$H = -\nabla^2$$

The Hamiltonian of a free particle moving on G = SU(3):

$$H = -\nabla^2$$

The Hilbert space is $\mathbb{C}G$: one basis state for every $U \in G$.

$$\left| \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\rangle, \left| \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & i \\ -i & 0 & 0 \end{pmatrix} \right\rangle, \left| \begin{pmatrix} 0 & 0 & 1 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{pmatrix} \right\rangle$$

The Hamiltonian of a free particle moving on G = SU(3):

$$H = -\nabla^2$$

The Hilbert space is $\mathbb{C}G$: one basis state for every $U \in G$.

$$\left| \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\rangle, \left| \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & i \\ -i & 0 & 0 \end{pmatrix} \right\rangle, \left| \begin{pmatrix} 0 & 0 & 1 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{pmatrix} \right\rangle$$

The Hamiltonian is diagonal in Fourier space. (For R, momentum space.)

Hamiltonian Lattice Gauge Theory

$$H = \frac{1}{g^2} \left[\sum_{L} \nabla_{L}^2 + \sum_{P} \operatorname{Re} \operatorname{Tr} P \right]$$

Gauge Symmetry

$$U_{ij}\mapsto V_j U_{ij} V_i^{\dagger}$$

$${
m Tr} \; U_{14}^{\dagger} U_{45}^{\dagger} U_{25} U_{12} \
ightarrow {
m Tr} \; U_{14}^{\dagger} U_{45}^{\dagger} U_{25} V_2^{\dagger} V_2 U_{12} \
ightarrow {
m Tr} \; U_{14}^{\dagger} U_{45}^{\dagger} U_{25} V_2^{\dagger} V_2 U_{12} \
ightarrow {
m Tr} \; U_{14}^{\dagger} U_{45}^{\dagger} U_{45} U_{45} V_{45} V_{45$$

The Hamiltonian is gauge-invariant

$$H = \frac{1}{g^2} \left[\sum_{\langle ij \rangle} \nabla_{ij}^2 + \sum_P \operatorname{Re} \operatorname{Tr} P \right]$$

The Hilbert Space

The Hilbert Space

Only Gauge-Invariant States Allowed!

$$|U_{12}\rangle \qquad \int \mathrm{d}V_1 \mathrm{d}V_2 \left|V_2^{\dagger}U_{12}V_1\right\rangle$$
The Hilbert Space

$$\mathcal{H} = \mathbb{C} G \otimes \mathbb{C} G \otimes \cdots$$

Only Gauge-Invariant States Allowed!

$$\left| \begin{array}{c} \int \mathrm{d} V_1 \mathrm{d} V_2 \left| V_2^{\dagger} U_{12} V_1 \right\rangle \right.$$

The Hilbert Space

Only Gauge-Invariant States Allowed!

$$\left| \begin{array}{c} \int \mathrm{d}V_1 \mathrm{d}V_2 \right| V_2^{\dagger} U_{12} V_1 \right\rangle$$

Here's a projection operator:

$$P | U_{12} \cdots \rangle = \int (\mathrm{d} V_1 \mathrm{d} V_2 \cdots) | V_2^{\dagger} U_{12} V_1 \cdots \rangle$$

Trotterization

 $H = \frac{1}{g^2} \left[\sum_{L}^{H_{\mathcal{K}}} \nabla_L^2 + \sum_{P}^{H_{\mathcal{V}}} \operatorname{Re} \operatorname{Tr} P \right]$

Trotterization

$$H = \frac{1}{g^2} \left[\underbrace{\sum_{L}^{H_K} \nabla_L^2}_{L} + \underbrace{\sum_{P}^{H_V} \operatorname{Re} \operatorname{Tr} P}_{P} \right]$$

Kinetic

Potential

One link only Diagonal in Fourier space Mutually commuting terms Four links Diagonal (in our basis) Mutually commuting terms

$$e^{-iHt} \approx \left[\left(e^{-i\nabla_1^2 \epsilon} e^{-i\nabla_2^2 \epsilon} \cdots \right) \left(e^{-i\epsilon \operatorname{Re}\operatorname{Tr} P_1} e^{-i\epsilon \operatorname{Re}\operatorname{Tr} P_2} \cdots \right) \right]^{t/\epsilon}$$

Hilbert Space on a Quantum Computer

Classical algorithms \longrightarrow quantum algorithms!

 $SU(3) \longleftrightarrow \{0000, 0001, 0010, \cdots\}$

Hilbert Space on a Quantum Computer

 $Classical \ algorithms \longrightarrow quantum \ algorithms!$

 $SU(3) \longleftrightarrow \{ \ket{0000}, \ket{0001}, \ket{0010}, \cdots \}$

Hilbert Space on a Quantum Computer

Classical algorithms \longrightarrow quantum algorithms!

 $SU(3) \longleftrightarrow \{ \ket{0000}, \ket{0001}, \ket{0010}, \cdots \}$

That's a basis for $\tilde{\mathcal{H}}_1$! An "SU(3)-register" — the analog of a classical variable.

Now that we have $\mathcal{H}_1\sim\tilde{\mathcal{H}}_1,$ we can construct the full $\mathcal H$ on a quantum computer.

$$|U_{12}\rangle |U_{23}\rangle \cdots \in \tilde{\mathcal{H}}_1 \otimes \tilde{\mathcal{H}}_1 \otimes \cdots$$

The set of physical states is a linear subspace.

$$H = \frac{1}{g^2} \left[\sum_{L} \nabla_L^2 + \underbrace{\sum_{P} \operatorname{Re} \operatorname{Tr} P}_{P} \right]$$

We need an operator:

$$\mathcal{U}(heta)\ket{A}\ket{B}\ket{C}\ket{D} = e^{-i heta\operatorname{\mathsf{Re}}\operatorname{\mathsf{Tr}}(ABCD)}\ket{A}\ket{B}\ket{C}\ket{D}$$

$$H = \frac{1}{g^2} \left[\sum_{L} \nabla_L^2 + \underbrace{\sum_{P} \operatorname{Re} \operatorname{Tr} P}_{P} \right]$$

We need an operator:

$$\begin{split} \mathcal{U}(\theta) \ket{A} \ket{B} \ket{C} \ket{D} &= e^{-i\theta \operatorname{\mathsf{Re}} \operatorname{\mathsf{Tr}}(ABCD)} \ket{A} \ket{B} \ket{C} \ket{D} \\ & \ket{A} \ket{B} \ket{C} \ket{D} \end{split}$$

$$H = \frac{1}{g^2} \left[\sum_{L} \nabla_L^2 + \underbrace{\sum_{P} \operatorname{Re} \operatorname{Tr} P}_{P} \right]$$

We need an operator:

 $\begin{aligned} \mathcal{U}(\theta) \ket{A} \ket{B} \ket{C} \ket{D} &= e^{-i\theta \operatorname{\mathsf{Re}} \operatorname{\mathsf{Tr}}(ABCD)} \ket{A} \ket{B} \ket{C} \ket{D} \\ &= \ket{A} \ket{B} \ket{C} \ket{D} \\ &\to \ket{A} \ket{B} \ket{C} \ket{CD} \end{aligned}$

$$H = \frac{1}{g^2} \left[\sum_{L} \nabla_L^2 + \underbrace{\sum_{P} \operatorname{Re} \operatorname{Tr} P}_{P} \right]$$

We need an operator:

 $\mathcal{U}(\theta) |A\rangle |B\rangle |C\rangle |D\rangle = e^{-i\theta \operatorname{Re} \operatorname{Tr}(ABCD)} |A\rangle |B\rangle |C\rangle |D\rangle$ $|A\rangle |B\rangle |C\rangle |D\rangle$ $\rightarrow |A\rangle |B\rangle |C\rangle |D\rangle$ $\rightarrow \cdots \rightarrow |A\rangle |B\rangle |C\rangle |ABCD\rangle$

$$H = \frac{1}{g^2} \left[\sum_{L} \nabla_L^2 + \underbrace{\sum_{P} \operatorname{Re} \operatorname{Tr} P}_{P} \right]$$

We need an operator:

 $\mathcal{U}(\theta) |A\rangle |B\rangle |C\rangle |D\rangle = e^{-i\theta \operatorname{Re} \operatorname{Tr}(ABCD)} |A\rangle |B\rangle |C\rangle |D\rangle$ $|A\rangle |B\rangle |C\rangle |D\rangle$ $\rightarrow |A\rangle |B\rangle |C\rangle |CD\rangle$ $\rightarrow \cdots \rightarrow |A\rangle |B\rangle |C\rangle |ABCD\rangle$ $\rightarrow |A\rangle |B\rangle |C\rangle e^{-i\theta \operatorname{Re} \operatorname{Tr}(ABCD)} |ABCD\rangle$

$$H = \frac{1}{g^2} \left[\sum_{L} \nabla_L^2 + \underbrace{\sum_{P} \operatorname{Re} \operatorname{Tr} P}_{P} \right]$$

We need an operator:

 $\begin{aligned} \mathcal{U}(\theta) \left| A \right\rangle \left| B \right\rangle \left| C \right\rangle \left| D \right\rangle &= e^{-i\theta \operatorname{Re} \operatorname{Tr}(ABCD)} \left| A \right\rangle \left| B \right\rangle \left| C \right\rangle \left| D \right\rangle \\ &= \left| A \right\rangle \left| B \right\rangle \left| C \right\rangle \left| D \right\rangle \\ &\to \left| A \right\rangle \left| B \right\rangle \left| C \right\rangle \left| CD \right\rangle \\ &\to \cdots \to \left| A \right\rangle \left| B \right\rangle \left| C \right\rangle \left| ABCD \right\rangle \\ &\to \left| A \right\rangle \left| B \right\rangle \left| C \right\rangle e^{-i\theta \operatorname{Re} \operatorname{Tr}(ABCD)} \left| ABCD \right\rangle \\ &\to e^{-i\theta \operatorname{Re} \operatorname{Tr}(ABCD)} \left| A^{\dagger} \right\rangle \left| B^{\dagger} \right\rangle \left| C^{\dagger} \right\rangle \left| ABCD \right\rangle \end{aligned}$

$$H = \frac{1}{g^2} \left[\sum_{L} \nabla_L^2 + \underbrace{\sum_{P} \operatorname{Re} \operatorname{Tr} P}_{P} \right]$$

We need an operator:

 $\begin{aligned} \mathcal{U}(\theta) |A\rangle |B\rangle |C\rangle |D\rangle &= e^{-i\theta \operatorname{Re}\operatorname{Tr}(ABCD)} |A\rangle |B\rangle |C\rangle |D\rangle \\ &|A\rangle |B\rangle |C\rangle |D\rangle \\ &\rightarrow |A\rangle |B\rangle |C\rangle |CD\rangle \\ &\rightarrow \cdots \rightarrow |A\rangle |B\rangle |C\rangle |ABCD\rangle \\ &\rightarrow |A\rangle |B\rangle |C\rangle e^{-i\theta \operatorname{Re}\operatorname{Tr}(ABCD)} |ABCD\rangle \\ &\rightarrow e^{-i\theta \operatorname{Re}\operatorname{Tr}(ABCD)} |A^{\dagger}\rangle |B^{\dagger}\rangle |C^{\dagger}\rangle |ABCD\rangle \\ &\rightarrow \cdots \rightarrow e^{-i\theta \operatorname{Re}\operatorname{Tr}(ABCD)} |A\rangle |B\rangle |C\rangle |D\rangle \end{aligned}$

$$H = \frac{1}{g^2} \left[\sum_{L}^{H_K} \nabla_L^2 + \sum_{P} \operatorname{Re} \operatorname{Tr} P \right]$$

Diagonal in "momentum basis". Need to perform a Quantum Fourier Transform. This is a Fourier transform of $\Psi(x)$:

$$|\Psi
angle = \sum_{x} \Psi(x) |x
angle$$

$$H = \frac{1}{g^2} \left[\sum_{L}^{H_{K}} \nabla_{L}^{2} + \sum_{P} \operatorname{Re} \operatorname{Tr} P \right]$$

Diagonal in "momentum basis". Need to perform a Quantum Fourier Transform. This is a Fourier transform of $\Psi(x)$:

$$\ket{\Psi} = \sum_{x} \Psi(x) \ket{x}$$

For \mathbb{Z}_2 : σ_x is diagonal in Fourier space, and H performs QFT.

$$H = \frac{1}{g^2} \left[\sum_{L}^{H_{K}} \nabla_{L}^{2} + \sum_{P} \operatorname{Re} \operatorname{Tr} P \right]$$

Diagonal in "momentum basis". Need to perform a Quantum Fourier Transform. This is a Fourier transform of $\Psi(x)$:

$$\ket{\Psi} = \sum_{x} \Psi(x) \ket{x}$$

For \mathbb{Z}_2 : σ_x is diagonal in Fourier space, and H performs QFT. For \mathbb{R} :

$${\sf F} \ket{x} = \sum_p e^{-i x p} \ket{p}$$

For *SO*(3): QFT decomposes into spherical harmonics So: QFT, then phase gate (on a single link!), then QFT.

The Dihedral Group D₄

As a matrix group, $D_4 < U(2)$.

$$\left\langle \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \right\rangle$$

The D₄-Register

 $|D_4| = 8$, so we want 3 qubits.

Inversion

$\mathsf{Classical\ circuits} \longrightarrow \mathsf{quantum\ circuits!}$

$$\begin{array}{ll} |000\rangle \rightarrow |000\rangle & |100\rangle \rightarrow |100\rangle \\ |001\rangle \rightarrow |011\rangle & |101\rangle \rightarrow |101\rangle \\ |010\rangle \rightarrow |010\rangle & |110\rangle \rightarrow |110\rangle \\ |011\rangle \rightarrow |001\rangle & |111\rangle \rightarrow |111\rangle \end{array}$$

$$X=egin{pmatrix} 0&1\1&0 \end{pmatrix} \leftrightarrow \ket{1} \end{pmatrix}$$

Multiplication

Classical circuits \longrightarrow quantum circuits!

 $\mathcal{U}_{ imes} \ket{U} \ket{V} = \ket{U} \ket{UV}$

Because G is a group, this operation is unitary.

Multiplication

Classical circuits \longrightarrow quantum circuits!

 $\mathcal{U}_{ imes} \ket{U} \ket{V} = \ket{U} \ket{UV}$

Because G is a group, this operation is unitary.

Multiplication

Classical circuits \longrightarrow quantum circuits!

 $\mathcal{U}_{ imes} \ket{U} \ket{V} = \ket{U} \ket{UV}$

Because G is a group, this operation is unitary.

Multiplication and inversion let us construct a plaquette:

$$\mathcal{U}_{P} \ket{U_{12} \cdots} \ket{\mathbf{1}} = \ket{U_{12} \cdots} \ket{P}$$

Trace

$$\mathcal{U}_{\mathsf{Tr}}(heta) \ket{U} = e^{i heta \operatorname{\mathsf{Re}} \operatorname{\mathsf{Tr}} U} \ket{U}$$

Only two elements of D_4 have non-zero trace.

$$\mathsf{Tr} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 2 \qquad \qquad \mathsf{Tr} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -2$$

These correspond to the states $|000\rangle$ and $|010\rangle$.

Fourier Transform

$$\begin{pmatrix} \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} \\ \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} \\ \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} \\ \frac{1}{\sqrt{8}} & -\frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & -\frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} \\ \frac{1}{\sqrt{8}} & -\frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & -\frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} \\ \frac{1}{\sqrt{8}} & -\frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & -\frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} \\ \frac{1}{\sqrt{8}} & -\frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & -\frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} \\ \frac{1}{\sqrt{8}} & 0.0 & -\frac{1}{2} & 0.0 & \frac{1}{2} & 0.0 & -\frac{1}{2} & 0.0 \\ 0.0 & -\frac{1}{2} & 0.0 & -\frac{1}{2} & 0.0 & \frac{1}{2} & 0.0 & -\frac{1}{2} \\ 0.0 & \frac{1}{2} & 0.0 & -\frac{1}{2} & 0.0 & \frac{1}{2} & 0.0 \end{pmatrix} \end{pmatrix}$$

Fourier Transform

$$\begin{pmatrix} \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} \\ \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} \\ \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & -\frac{1}{\sqrt{8}} & -\frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} \\ \frac{1}{\sqrt{8}} & -\frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & -\frac{1}{\sqrt{8}} & -\frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & -\frac{1}{\sqrt{8}} \\ \frac{1}{\sqrt{8}} & -\frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & -\frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & -\frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} \\ \frac{1}{2} & 0.0 & -\frac{1}{2} & 0.0 & \frac{1}{2} & 0.0 & -\frac{1}{2} & 0.0 \\ 0.0 & -\frac{1}{2} & 0.0 & \frac{1}{2} & 0.0 & \frac{1}{2} & 0.0 & -\frac{1}{2} \\ 0.0 & \frac{1}{2} & 0.0 & -\frac{1}{2} & 0.0 & \frac{1}{2} & 0.0 & \frac{1}{2} & 0.0 \\ \frac{1}{2} & 0.0 & -\frac{1}{2} & 0.0 & -\frac{1}{2} & 0.0 & \frac{1}{2} & 0.0 \end{pmatrix}$$

Yikes! This is a job for a computer...

The **global** Hilbert space is large, and can't be treated classically. The **local** Hilbert space is small, so **it can be treated classically**.

The diagonalized kinetic operator is

 $\mathcal{H} = \mathbb{C} D_4 \otimes \mathbb{C} D_4 \otimes \cdots \text{ maps onto } 3 \times L \text{ qubits}$

- 1. Prepare initial state (somehow)
- 2. Trace circuit on all plaquettes
- 3. QFT on all links
- 4. Phase gate on the most-significant qubit of all links
- 5. QFT^{\dagger} on all links
- 6. Repeat 2-5 to get the desired t
- 7. Measure; look at something gauge-invariant

Requires \sim 300 gates per time step.

Real-Time Evolution

A Comment on Trotterization

Deriving time evolution

$$U = e^{-iHt}$$
$$= \left(e^{-i(H_1 + H_2)\delta}\right)^{t/\delta}$$
$$\approx \left(e^{-iH_1\delta}e^{-iH_2\delta}\right)^{t/\delta}$$

A Comment on Trotterization

Deriving time evolution

l

$$egin{aligned} \mathcal{J} &= e^{-iHt} \ &= \left(e^{-i(H_1+H_2)\delta}
ight)^{t/\delta} \ &pprox \left(e^{-iH_1\delta}e^{-iH_2\delta}
ight)^{t/\delta} \end{aligned}$$

Deriving the euclidean lattice

$$Z = \operatorname{Tr} e^{-\beta H}$$
$$= \operatorname{Tr} \left(e^{-\delta(H_1 + H_2)} \right)^{\beta/\delta}$$
$$\approx \operatorname{Tr} \left(e^{-\delta H_1} e^{-\delta H_2} \right)^{\beta/\delta}$$

It's the same procedure!

A Comment on Trotterization

Deriving time evolution

$$U = e^{-iHt} \qquad Z = \operatorname{Tr} e^{-\beta H}$$
$$= \left(e^{-i(H_1 + H_2)\delta}\right)^{t/\delta} \qquad = \operatorname{Tr} \left(e^{-\delta(H_1 + H_2)}\right)^{\beta/\delta}$$
$$\approx \left(e^{-iH_1\delta}e^{-iH_2\delta}\right)^{t/\delta} \qquad \approx \operatorname{Tr} \left(e^{-\delta H_1}e^{-\delta H_2}\right)^{\beta/\delta}$$

It's the same procedure!

Deriving the euclidean lattice

Physics on the classical lattice should be similar to physics on the quantum lattice.

Coupling Constants on the Cheap!

$$H = \frac{1}{g^2} \left[a^3 \sum_{\langle ij \rangle} \nabla_{ij}^2 + a^2 \sum_P \operatorname{Re} \operatorname{Tr} P \right] + a^3 m \sum_i \bar{\psi}_i \psi_i + a^2 \sum_{\langle ij \rangle} \bar{\psi}_i \psi_j$$

We want $m_{\pi} \approx 135 \text{MeV}$. What should *a*, *m*, and *g* be?

Coupling Constants on the Cheap!

$$H = \frac{1}{g^2} \left[a^3 \sum_{\langle ij \rangle} \nabla_{ij}^2 + a^2 \sum_P \operatorname{Re} \operatorname{Tr} P \right] + a^3 m \sum_i \bar{\psi}_i \psi_i + a^2 \sum_{\langle ij \rangle} \bar{\psi}_i \psi_j$$

We want $m_{\pi} \approx 135 \text{MeV}$. What should *a*, *m*, and *g* be?

Use the euclidean lattice!

Spatial discretization and finite volume effects are the same: desired couplings can be found classically.

The Present

The Near Future

Current best ~ 10 qubits 10 gates

"Quantum supremacy" 50 qubits 40 gates

Needed (for 10³ lattice)

 $\overbrace{10^3\times3}^{links}\times \overbrace{16\times18}^{\textit{SU}(3)\text{-register}}\sim 10^6 \text{ qubits}$

Why bother?

Concrete staring point for more efficient algorithms Are large-scale quantum processors worth building?
Why bother?

Concrete staring point for more efficient algorithms Are large-scale quantum processors worth building?

Inspiration for new classical algorithms

A quantum-inspired classical algorithm for recommendation systems

Ewin Tang

July 13, 2018

Abstract

A recommendation system suggests products to users based on data about user preferences. It is typically modeled by a problem of completing an $m \times n$ matrix of small rank k. We give the first classical algorithm to produce a recommendation in $O(\text{poly}(k) \operatorname{poly}(g(m, n))$ time, which is an exponential improvement on previous algorithms that run in time linear in m and n. Our strategy is inspired by a quantum algorithm by Kerenidis and Prakash: like the quantum algorithm, instead of recom-

- How few qubits can we get away with?
- Can error correction/tolerance be done more cheaply?
- How to prepare QCD ground state?
- What algorithms *don't* involve e^{-iHt} ?

Outline

Simulating QCD

Overview of Quantum Computing

Straightforward Algorithms

A Crucial Building Block

Simulating Gauge Theories

Bits and Pieces — D₄

Simulated Simulations

Choosing Coupling

Future Work