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Some Questions in Nonperturbative QCD
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Parton Physics
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Parton Physics on the Eucidean Lattice
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Parton Physics on the Eucidean Lattice

() = [ dz &' (Pl e (z)e Mot (0) |P)

Many methods available: Quasi PDFs, Pseudo PDFs...

Parton Physics on Euclidean Lattice

Xiangdong Ji'+?
Exploring quark transverse momentum distributions with lattice QCD

B.U. Musch, Ph. Higler,>* J.W. Negele,* and A. Schiifer®

Complexities stem from Euclidean — Minkowski.

PDFs are natural in a quantum simulation.
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The Great Quantum Hope

50 qubit machines now available.
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The Great Quantum Hope

50 qubit machines now available.

Quantum supremacy using a programmable superconducting processor

Google Al Quantum and collaborators’

The tantalizing promise of quantum computers is that certain computational tasks might be
executed exponentially faster on a quantum processor than on a classical processor. A fundamen-
tal challenge is to build a high-fidelity processor capable of running quantum algorithms in an
exponentially large computational space. Here, we report using a processor with programmable
superconducting qubits to create quantum states on 53 qubits, occupying a state space 2°% ~ 106,

Towards analog quantum simulations of lattice gauge theories with trapped ions

Zohreh Davoudi,'>2 * Mohammad Hafezi** Christopher

Monroe,*® Guide Pagano,® Alireza Seif,’ and Andrew Shaw!
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Realistically...

Current quantum processors: 50 qubits, 10 gates
Are large processors worth it?
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Realistically...

Current quantum processors: 50 qubits, 10 gates
Are large processors worth it?

A quantum-inspired classical algorithm for

recommendation systems

Ewin Tang
July 13, 2018
Abstract

A recommendation system suggests products to users based on data about user

ly modeled by a problem of compl

ve the first chassical algorithn to produce

O(poly (k) polylos i
rithms that rn in
algorithm by Kerenidis and Peakash: like the quantum

Quantum-inspired classical algorithms for principal
component analysis and supervised clustering
Ewin Tang
November 2, 2018
Abstract

We describe clas
analysis and nearest

s to quantum algoriths for principal component
clusteri ampling assumptions, our classical
ithumic in input,

algorithms run in time ol

atching the runtime of the quantum
slowdown. These algorithms are evidence that their
corresponding problems do not yield exponential quantum speedups. To build our

algorithms with ouly polynom
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Overview

A quantum computer is a quantum system evolved in real-time
QC Hilbert space <= physical Hilbert space

Parton distribution function:

() = [ dz &7 (Pl e (z)e eyt Wep(0) P)
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Overview

A quantum computer is a quantum system evolved in real-time
QC Hilbert space <= physical Hilbert space

Parton distribution function:

() = [ dz &7 (Pl e (z)e eyt Wep(0) P)

= Some quantum algorithms

= Hamiltonian formulation of gauge theory

Putting SU(3) on a quantum computer: 5(1080) < SU(3)
Parton physics of $(1080) gauge theory
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From Bit to Qubit

0y, |1)...
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From Bit to Qubit

0y, |1)...

ll>
0)

This is a spin from QM.

o
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A Quantum Computer

9999900

Physically, there's a Hilbert space:

H=H1H1® -

When we measure, we collapse into one of the 2V states in the
“fiducial basis".

|W) — |0101010)
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Gates

Arbitrary one-qubit gates are ‘easy’ — can

be constructed from Hadamard and g-gate.

1 (1 1 e™/8 0
H=— , T = )
V2 (1 —1> ( 0 e_”T/S)

8/ 44



Gates

Arbitrary one-qubit gates are ‘easy’ — can
be constructed from Hadamard and g-gate.

1 (1 1 e™/8 0
H=— , T = )
V2 (1 —1) ( 0 e_”T/S)

) )
HFPAH 101) > |01)
T I T 110) s |11)
) )

8/ 44



Gates

Arbitrary one-qubit gates are ‘easy’ — can
be constructed from Hadamard and g-gate.

1 (1 1 e™/8 0
H=— , T = )
V2 (1 —1) ( 0 e_”T/S)

) )
HFPAH 101) > |01)
T I T 110) s |11)
) )

8/ 44



What is a classical computer?
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What is a classical computer?

A quantum computer constantly being measured in the fiducial basis.

|01) is okay — [|00) + [11)] is not
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What is a classical computer?

A quantum computer constantly being measured in the fiducial basis.

|01) is okay — [|00) + [11)] is not

1 000
0100 [
0 001
0 010
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Classical Algorithms Are Quantum Algorithms

Any classical circuit can be made into a quantum circuit!

Example: two-bit adder

00) |00) — |00} |00
01) |00) — |01) |01
110) |00) — |10) |01
)100) )

)
)
)
|11) |00) — |11)]10)

In general, given a classical function f(x), we can implement:

X)10) = [x) [£(x))
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Inverting Circuits

As long as we have the inverse of each individual gate...
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Inverting Circuits

As long as we have the inverse of each individual gate...

(AB)"l =B1A™!
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Phase Gates

Easy version of real-time evolution: U(t) = e~ with H diagonal.

o O O

111) — e~ |11)

o O = O
o = O O

Rz(0)

12 / 44



Real-Time Evolution (Trotter-Suzuki)

Goal: e /Mt

e—i(H1+H2)€ —iHlee—iH2€

~ e

1. Split H into tiny pieces
2. Diagonalize each piece

3. Hit with phase gates

13/ 44



Real-Time Evolution (Trotter-Suzuki)

Goal: e /Mt

e—i(H1+H2)€ —leee—fH2€

~ e

1. Split H into tiny pieces
2. Diagonalize each piece

3. Hit with phase gates

On a classical computer: 2V x 2N matrices.

On a quantum computer: N qubits and o t/e gates.
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Example: Coupled Spins

Hy Hy
H = 02(1)02(2) + 1 (0x(1) + 0x(2))
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Example: Coupled Spins

Hy Hyc
H = 02(1)02(2) + 1 (0x(1) + 0x(2))

. . 2 t
e—/Ht ~ (eleVeeleKe> /e

S |
iy 5 eliegel Hy is diagonalized by the

1 0 0 0 Hadamard gate.

0 ¢ 0 0
0 0 €°0

0 0 0 1
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Measurements

(O()0(0)) = (V| et O~ O |W)

This is not a Hermitian operator!
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Measurements

(O()0(0)) = (V| M Oe™ ™0 W)
This is not a Hermitian operator!

Perturb the Hamiltonian:

H.(t) = H + ed(t)O

And now estimate the derivative:

10

Im (V| O(t)O(0) |W) = 50 (| i0¢ giHt (1) g—iHt g—iOc )
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Quantum Mechanics on a Group

The Hamiltonian of a free particle moving on G = SU(3):

H=-V?
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Quantum Mechanics on a Group

The Hamiltonian of a free particle moving on G = SU(3):
H=-V°

The Hilbert space is CG: one basis state for every U € G.

100 0 1 0 0 0 1
010>,00i>,\%\}%0>
00 1 i 00 3 30
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Quantum Mechanics on a Group

The Hamiltonian of a free particle moving on G = SU(3):
H=-V?

The Hilbert space is CG: one basis state for every U € G.

0 10

0 0
10 >, 0 0 i >,
01 0 0

—1

o O =
SRk o

The Hamiltonian is diagonal in Fourier space. (For R, momentum
space.)
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Hamiltonian Lattice Gauge Theory

v IP.\

U4

— =

Ui Us

H=pBk> Vi+Bp) ReTrP
L P
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Gauge Symmetry

Uj = ViUV
Uis /

.
Tr UJ, U5 Uas Us

— Tr US, Uls Uns Vi Vo Up

The Hamiltonian is gauge-invariant

H= 6KZV,J—|—BPZReTrP
ij)
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The Hilbert Space

Uy

U H=CGCCG®---

Uy U,
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The Hilbert Space

Uy

U4 H=CGRCG®---

U1 [/‘72

Only Gauge-Invariant States Allowed!

|Us2) J dVadV, |Vf Ui V1)
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The Hilbert Space

U. 3

Uy

U

[/Yz

H=CGRCG®---

Only Gauge-Invariant States Allowed!

N

J dVadV, |Vf Ui V1)
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The Hilbert Space

Uli

U.()

Uy

Us

H=CGRCG®---

Only Gauge-Invariant States Allowed!

N

Here's a projection operator:

[dVadVs (vju12 v1>

P|U12--~>:/(dV1dV2---) ’\/JU12\/1...>
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Trotterization
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Trotterization

H== Y Vi+)> ReTrpP
& |1 P
Kinetic Potential
One link only Four links
Diagonal in Fourier space Diagonal (in our basis)
Mutually commuting terms Mutually commuting terms

. . g g 0 t/e
elet ~ Keﬂvieeﬂvge . ) (efle Re Tr P; e i€ ReTrPy | )] /
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Example: Z,, One ‘Plaquette’

H = ox(a) + ox(b) + o,(a)o,(b)

N
N
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Example: Z,, One ‘Plaquette’

H = ox(a) + ox(b) + o,(a)o,(b)
'
N

The gauge transformation operator: o, (a)ox(b).

100) < |11} and |01) < |10)
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Example: Z,, One ‘Plaquette’

H = ox(a) + ox(b) + o,(a)o,(b)
'
N

The gauge transformation operator: oy (a)ox(b).

100) < |11} and |01) < |10)

Physical states: |P = 0) = |00) + |11),

P =1) =101) + |10)
Unphysical states: |00) — |11), |01) — |10)
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Example: Z,, One ‘Plaquette’

H = 04(3) + ox(b) + 02(3)0(b)

N
N

Rzz(At)
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The Problem with SU(3)

SU(3) mechanics has an infinite dimensional Hilbert space.

One qubit has a 2-dimensional Hilbert space.

99990

N <

Any implementation of SU(3) on a QC must be an approximation.
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A Natural Truncation

Largest ‘nice’ finite subgroup of SU(3): $(1080)

Plaguette

Simulate 5(1080) gauge theory instead

1.2

08
06
04

02

S(1080) — s |

SU@3) ——

X
X

x

S

4

Inverse Coupling

6
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Does it work?

With an improved action:

S=-> (ﬁ; ReTr U, + 1 ReTr Ug)

p

Measure two scales, and compare the ratio to SU(3): Wilson flow,
center symmetry
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Does it work?

With an improved action:

S=-> (ﬁ; ReTr U, + 1 ReTr Ug)
P
Measure two scales, and compare the ratio to SU(3): Wilson flow,

center symmetry
0.26

e T.: center symmetry breaking
éo'zo g?",ﬁ to: solution to 0.3 = t2 (E)s,
= Dimensionless ratio T +/tp.
0.24 = 2 : -
0 0.5 1 1.5
azfr‘[;
1906.11213
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Does it actually work?

Smallest lattice spacing is a = 0.08 fm.

At this spacing, $(1080) and SU(3) agree on the low-energy
observable T.\/to.

Beyond this spacing, they disagree violently.
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Does it actually work?

Smallest lattice spacing is a = 0.08 fm.

At this spacing, $(1080) and SU(3) agree on the low-energy
observable T \/tg.

Beyond this spacing, they disagree violently.

Do other low-energy quantities agree?

In progress: spectroscopy, further improved actions
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So what do we need?

= Map from S(1080) Hilbert space to the quantum computer
= Time evolution: kinetic and potential pieces.
= State preparation

= A good observable to look at

[ -
L -

27/ 44



5(1080) Hilbert Space on a Quantum Computer

Classical algorithms — quantum algorithms!

$(1080) +— {...000,...001,...010,---}
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5(1080) Hilbert Space on a Quantum Computer

Classical algorithms — quantum algorithms!

$(1080) <—> {|...000),]...001),]|...010),---}

That's a basis for ;! An “5(1080)-register” — the analog of a
classical variable.

Now that we have H;, we can construct the full H on a quantum
computer.
|U2) |Uz3) - - € H1QH1 ® - - -

The set of physical states is a linear subspace.
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Potential Term

1 o
== ZV +ZReTrP
& |7 2

We need an operator:

U(6)14) |B) |C) |D) = e~ ReTHABED) | 4) | B) | C) | D)
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Potential Term

1 X '
== ZV +ZReTrP
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Potential Term
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We need an operator:
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Potential Term

1 o
== ZV +ZReTrP
& |7 2

We need an operator:

U(6)14) |B) |C) |D) = e~ ReTHABED) | 4) | B) | C) | D)

|A)|B) |C) |D)
—|A)[B)[C)[CD)
— .- —|A)|B) |C) |ABCD)

N ‘A> ’B) ‘C> e—iG Re Tr(ABCD) |ABCD>
_, e~ i0ReTr(ABCD) ‘AT> ‘BT> ‘CT> |ABCD)

20 /44



Potential Term

1 o
== ZV +ZReTrP
& |7 2

We need an operator:

U(6)14) |B) |C) |D) = e~ ReTHABED) | 4) | B) | C) | D)

|A)|B) |C) |D)
—|A)[B)[C)[CD)
— .- —|A)|B) |C) |ABCD)

N ‘A> ’B) ‘C> e—iG Re Tr(ABCD) |ABCD>
_, o~ 10 Re Tr(ABCD) ‘AT> ‘BT> ‘CT> |ABCD)
s ... e i9ReTr(ABCD) |A) |B) |C) |D)
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Kinetic Term

H,
H= > Y Vi+> ReTrpP
L P

Diagonal in “momentum basis”. Need to perform a Quantum
Fourier Transform. This is a Fourier transform of W(x):

W) =D ¥(x)|x)
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Kinetic Term

H,
H= > Y Vi+> ReTrpP
L P

Diagonal in “momentum basis”. Need to perform a Quantum
Fourier Transform. This is a Fourier transform of W(x):

W) =D ¥(x)|x)

For Z,: oy is diagonal in Fourier space, and H performs QFT.
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Kinetic Term

H,
H= > Y Vi+> ReTrpP
L P

Diagonal in “momentum basis”. Need to perform a Quantum
Fourier Transform. This is a Fourier transform of W(x):

V) = ZX: V(x) [x)
For Z,: oy is diagonal in Fourier space, and H performs QFT.
For R:

Flx)=>_e"|p)
For SO(3): QFT decomposes int[c)) spherical harmonics

So: QFT, then phase gate (on a single link!), then QFT.
30/ 44



Bits and Pieces

Primitive gates used:

= Multiplication

= |nversion

= Trace gate (a diagonal rotation)
= Fourier transform

= Kinetic gate (a diagonal rotation)

Gate construction for S(1080) in progress!
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Multiplication for 5(1080)/Z;

= = ] [s] — [s]
2] L]
| | ) S
N _T I L L
S - S
0 &7 oo = THT - o)
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Muiltiplication for S(1080)/Z; (More Schematic)

=
ﬁm
af
i
1
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So what do we need?

= Map from S(1080) Hilbert space to the quantum computer

= Time evolution: kinetic and potential pieces.

State preparation

= A good observable to look at

[ -
L -
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State preparation: A thousand flowers...

= Thermal bath
= Adiabatic state preparation
= Spectral comb (1709.08250)

= Hybrid state preparation (PhysRevLett 121 170501,
1908.07051)

Nobody knows how most of these things scale.

And we certainly can't test them on large systems now
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State preparation: A thousand flowers...

= Thermal bath
= Adiabatic state preparation
= Spectral comb (1709.08250)

= Hybrid state preparation (PhysRevLett 121 170501,
1908.07051)

Nobody knows how most of these things scale.

And we certainly can't test them on large systems now

Formal guarantees available for adiabatic state preparation

35/ 44



Adiabatic theorem

Take a time-varying (slowly) Hamiltonian H(t).
Prepare an eigenstate of H(0), with a gap of A.

When H/A2 < 0, time-evolution will keep us in the eigenstate.

Time needed to prepare ground state: A~2

36 / 44



Preparing the proton

Restrict to a certain sector of Hilbert space:

= Gauge-invariant states
= Zero total momentum

= Baryon number 1
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Preparing the proton

Restrict to a certain sector of Hilbert space:

= Gauge-invariant states
= Zero total momentum

= Baryon number 1

g=0
|
|

= Free fermions and glue (massive)
= Hadrons
= Ground state exactly prepared

. L -
= Small gap (O(3)) arge gap ()

Total circuit size: O(V?3)

37 /44



So what do we need?

= Map from S(1080) Hilbert space to the quantum computer
= Time evolution: kinetic and potential pieces.
= State preparation

= A good observable to look at

[ -
L -
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Thirring PDF

H=[axd@+mv+g (0)
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Thirring PDF
H=[axd@+mv+g (0)

Staggered discretization:

H = Z (X Xr+1 + XLrer)"'m( 1)rX];Xr_g2XIXrXi+1Xr+1
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Thirring PDF

H=[dxd@+mv+g (v)

Staggered discretization:

A= Z

Parton distribution function:

= /dz e*P 'z (P| M2y (2)e= M2yt 4p(0) |P)

1) (xdxrs1 + xF e ) +m(=1)"

T

0.2 «m=15¢g=0.0
«m=14,9=04 P
0.15 P
7
= 01 S
= /
//
0.05 e
— 77,.;«/
0 -
0 0.2 0.4 0.6 0.8 1

xixr—g2xtxext ixe
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Some (relatively minor) PDF complexities

() = [ dz 7' (Pl ei(2)e Moy t(0) |P)
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Some (relatively minor) PDF complexities

() = [ dz 7' (Pl ei(2)e Moy t(0) |P)
Convergence of the Fourier transform

. L .
/dz e*C(z) = lim lim / dz e’kze*€z2C(z)
—L

e—0 L—o0
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Some (relatively minor) PDF complexities

() = [ dz 7' (Pl ei(2)e Moy t(0) |P)
Convergence of the Fourier transform

. L .
/dz e*C(z) = lim lim / dz e’kze*€z2C(z)
—L

e—0 L—o0

Light cone: there really is none on the lattice.
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Some (relatively minor) PDF complexities

() = [ dz 7' (Pl ei(2)e Moy t(0) |P)

Convergence of the Fourier transform

e—0 L—o0

. L .
/dz e*C(z) = lim lim / dz e’kze*€z2C(z)
—L

Light cone: there really is none on the lattice.

None of which matters compared to...
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(PO W(x; 0)(0))

proton
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A long line...

<’t/7(><)v+ W(x; 0)’@‘5(0)>

proton
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The Hadronic Tensor

Wuu(q) — /dX eiqx <ein0JM()—<»)e—in0J1/(6)>

proton

No Wilson line needed! J* is a physical current.

H = Ho + ex(t)J*(X) + eo(t)J* (0)

In principle, PDF can be extracted from HT.
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Cross Sections

Quantum Computation of Scattering
in Scalar Quantum Field Theories

Stephen P. Jordan,® Keith S. M. Lee,# and John Preskill & *

Requires preparing asymptotic states!
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Cross Sections

Quantum Computation of Scattering
in Scalar Quantum Field Theories

Stephen P. Jordan,® Keith S. M. Lee,# and John Preskill & *

Requires preparing asymptotic states!
Cross sections may be determined from the Hadronic tensor:

d?c _ @L R
dx dy Q+

43 /44



The Future

For QCD PDFs: ~ 10° qubits needed (203 lattice)
Work out exact $(1080) circuits (reliable cost estimates)
Better truncation or improved Hamiltonian could give small gains

Understand 1 + 1 and 2 + 1 bound states?

=
00

()
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