Manifolds of Glory: Complex Contours for Ameliorating the Sign Problem

Scott Lawrence

with Andrei Alexandru, Paulo Bedaque, Henry Lamm, Neill Warrington Based on 1804.00697 and 1808.09799 12 September 2018

SIGN'18 in Universität Bielefeld

Fermion Sign Problem in a Path Integral

How to calculate a thermodynamic expectation value?

$$\langle \mathcal{O} \rangle \equiv \frac{1}{Z} \int \mathcal{D}\phi \ \mathcal{O}e^{-S(\phi)}$$

Importance sampling: draw N samples ϕ_n from $p(\phi) \propto e^{-S(\phi)}$. What if S isn't real?

$$\langle \mathcal{O} \rangle = \frac{\int \mathcal{D}\phi \ \mathcal{O} \ e^{-iS_I} e^{-S_R} / \int \mathcal{D}\phi \ e^{-S_R}}{\int \mathcal{D}\phi \ e^{-iS_I} e^{-S_R} / \int \mathcal{D}\phi \ e^{-S_R}} = \frac{\left\langle \mathcal{O}e^{-iS_I} \right\rangle_{S_R}}{\left\langle e^{-iS_I} \right\rangle_{S_R}}$$

The average phase $\langle \sigma \rangle$ may be small.

QCD (finite density), Hubbard model (away from half-filling) **Thirring model**, *QED* (both at finite density)

The Gaussian Sign Problem

$$Z = \int_{-\infty}^{\infty} \mathrm{d}x \ e^{-(x-i\mu)^2}$$

The Gaussian Sign Problem

$$Z = \int_{-\infty}^{\infty} \mathrm{d}x \ e^{-(x-i\mu)^2}$$

Invoke Cauchy's theorem!

No sign problem!

Cauchy's Integral Theorem

For any holomorphic function f(z): $0 = \int_{\partial\Omega} f \, \mathrm{d}z$

Cauchy's Integral Theorem

For any holomorphic function f(z): $0 = \int_{\partial \Omega} f \, \mathrm{d}z$

$$\int_{\gamma_1} f \, \mathrm{d} z = \int_{\gamma_2} f \, \mathrm{d} z$$

If we can continuously deform γ_1 to γ_2 , "tracing out" Ω .

Fermions (2 flavors) with a repulsive $(\bar{\psi}\gamma_{\mu}\psi)^2$ interaction.

$$S_{ ext{eff}}[A] = -rac{N_F}{g^2}\sum_{x,\mu} \cos A_\mu(x) - N_F \log \det D[A]$$

with Kogut-Susskind staggered fermions

$$D_{xy}[A] = m\delta_{xy} + \frac{1}{2}\sum_{\nu} \left[e^{iA_{\nu}(x) + \mu\delta_{\nu 0}} \delta_{x,(y+\hat{\mu})}(-1)^{x_0 + \dots + x_{\nu-1}} - e^{-iA_{\nu}(x) - \mu\delta_{\nu 0}} \delta_{(x+\hat{\mu}),y}(-1)^{x_0 + \dots + x_{\nu-1}} \right]$$

Fermions (2 flavors) with a repulsive $(\bar{\psi}\gamma_{\mu}\psi)^2$ interaction.

$$S_{ ext{eff}}[A] = -rac{N_F}{g^2}\sum_{x,\mu} \cos A_\mu(x) - N_F \log \det D[A]$$

with Kogut-Susskind staggered fermions

$$D_{xy}[A] = m\delta_{xy} + \frac{1}{2}\sum_{\nu} \left[e^{iA_{\nu}(x) + \mu\delta_{\nu 0}} \delta_{x,(y+\hat{\mu})}(-1)^{x_0 + \dots + x_{\nu-1}} - e^{-iA_{\nu}(x) - \mu\delta_{\nu 0}} \delta_{(x+\hat{\mu}),y}(-1)^{x_0 + \dots + x_{\nu-1}} \right]$$

Fields are periodic.

Theorem: Integrals of holomorphic functions are unchanged

Theorem: Integrals of holomorphic functions are unchanged

$$\langle \sigma \rangle = \frac{\int_{\mathcal{M}} e^{-S}}{\int_{\mathcal{M}} e^{-\operatorname{Re}S}}$$

Integrating on Curved Manifolds

$$\int_{\mathcal{M}} \mathrm{d}z \ e^{-S[z]} = \int_{\mathbb{R}^N} \mathrm{d}x \ e^{-S[z(x)]} \ \mathrm{det} \ J$$

Heavy-Dense Thirring

The sign problem is **worst** in the large- μ limit.

$$\det D \to e^{V\mu} \left[e^{i \sum A_0} + \mathcal{O} \left(e^{-\beta\mu} \right) \right]$$
$$Z \to \left[\int dA_0 \, dA_1 \, \exp\left(\frac{N_F}{g^2} \cos A_0 + iA_0 \right) \exp\left(\frac{N_F}{g^2} \cos A_1 \right) \right]^V$$

Heavy-Dense Thirring

The sign problem is **worst** in the large- μ limit.

$$\det D \to e^{V\mu} \left[e^{i \sum A_0} + \mathcal{O} \left(e^{-\beta\mu} \right) \right]$$
$$Z \to \left[\int dA_0 \, dA_1 \, \exp\left(\frac{N_F}{g^2} \cos A_0 + iA_0 \right) \exp\left(\frac{N_F}{g^2} \cos A_1 \right) \right]^V$$

$$\operatorname{Im} A_0(x) = \lambda_0 + \lambda_1 \cos [\operatorname{Re} A_0(x)] + \cdots$$

$$J_{(\mu,x)(\nu,y)} = \delta_{\mu\nu} \delta_{xy} [1 - i\delta_{\mu0}\lambda_1 \sin \operatorname{Re} A_0(x) + \cdots]$$

Heavy-Dense Thirring

The sign problem is **worst** in the large- μ limit.

$$\det D \to e^{V\mu} \left[e^{i \sum A_0} + \mathcal{O} \left(e^{-\beta\mu} \right) \right]$$
$$Z \to \left[\int \mathrm{d}A_0 \, \mathrm{d}A_1 \, \exp\left(\frac{N_F}{g^2} \cos A_0 + iA_0 \right) \exp\left(\frac{N_F}{g^2} \cos A_1 \right) \right]^V$$

$$\operatorname{Im} A_0(x) = \lambda_0 + \lambda_1 \cos [\operatorname{Re} A_0(x)] + \cdots$$

$$J_{(\mu,x)(\nu,y)} = \delta_{\mu\nu} \delta_{xy} [1 - i\delta_{\mu 0} \lambda_1 \sin \operatorname{Re} A_0(x) + \cdots]$$

What should λ_0 and λ_1 be?

Optimizing Manifolds

Sign-Optimized Manifold Method

$$\langle \sigma \rangle \equiv rac{\int \mathcal{D}A \; e^{-S(\phi(A)) + \log \det J}}{\int \mathcal{D}A \; e^{-S_R(\phi(A)) + \operatorname{Re}\log \det J}} = rac{Z}{Z_{\mathrm{PQ}}}$$

Gradient descent: calculate $\nabla_{\lambda} \langle \sigma \rangle$. This is hard!

Sign-Optimized Manifold Method

$$\langle \sigma \rangle \equiv \frac{\int \mathcal{D}A \ e^{-S(\phi(A)) + \log \det J}}{\int \mathcal{D}A \ e^{-S_R(\phi(A)) + \operatorname{Re}\log \det J}} = \frac{Z}{Z_{\mathrm{PQ}}}$$

Gradient descent: calculate $\nabla_{\lambda} \langle \sigma \rangle$. This is not hard!

$$\nabla_{\lambda} Z = 0$$

That leaves $\nabla_{\lambda} Z_{PQ}$, which is a phase-quenched observable. No sign problem!

$$\nabla_{\lambda} \log \left\langle \sigma \right\rangle = \left\langle \nabla_{\lambda} S - \operatorname{Tr} \log J^{-1} \nabla_{\lambda} J \right\rangle_{\operatorname{Re} S_{\operatorname{eff}}}$$

Sign-Optimized Manifold Method

1. Start with $\mathcal{M}(\lambda^{(0)}) = \mathbb{R}^N$.

- 2. Evaluate $\nabla_{\lambda} \log \langle \sigma \rangle = \langle \nabla_{\lambda} S \operatorname{Tr} \log J^{-1} \nabla_{\lambda} J \rangle_{\operatorname{Re} S_{\operatorname{eff}}}$
- 3. Step (with SGD) $\lambda^{(i+1)} = \lambda^{(i)} + \eta \nabla_{\lambda} \log \langle \sigma \rangle$

4. Repeat 2 and 3 until bored

Thirring 2 + 1: Sign Problem

 6^3 lattice with am = 0.01, $aM_f = 0.56 \pm 0.02$, g = 1.08

Thirring 2+1: Chiral Condensate

Thirring 2+1: Chiral Phase Transition

 $6^2 \times \beta$ lattice with am = 0.01, $aM_f = 0.56 \pm 0.02$, g = 1.08

$$Z = \int_{\mathbb{R}^N} \mathcal{D}\phi \ e^{-S[\tilde{\phi}(\phi)] + \log \det J}$$

The **residual phase** is Im log det *J*.

$$Z = \int_{\mathbb{R}^N} \mathcal{D}\phi \; e^{-S[ilde{\phi}(\phi)] + \log \det J}$$

The **residual phase** is Im log det *J*.

$$Z = (Z_1)^V \implies \langle \sigma \rangle = (\langle \sigma \rangle_1)^V$$

$$Z = (Z_1)^V \implies \langle \sigma \rangle = (\langle \sigma \rangle_1)^V$$

$$Z = (Z_1)^V \implies \langle \sigma \rangle = (\langle \sigma \rangle_1)^V$$

	Single site	10 ³ lattice
\mathbb{R}^{N}	0.645	10^{-190}
\mathcal{M}_{T}	0.985	$3 imes 10^{-7}$
$\mathcal{M}_{\rm SOM}$	0.9996	0.67

$$Z = \int \mathcal{D}A \ e^{-S_B} \det D = \int \mathcal{D}A \ e^{-\frac{S_{\text{eff}}}{S_B - \log \det D}}$$

Effective action isn't holomorphic, but the integrand is!

$$Z = \int \mathcal{D}A \ e^{-S_B} \det D = \int \mathcal{D}A \ e^{-\frac{S_{\text{eff}}}{S_B - \log \det D}}$$

Effective action isn't holomorphic, but the integrand is!

$$\left\langle \bar{\psi}_i \psi_j \bar{\psi}_j \psi_i \right\rangle = \frac{1}{Z} \int \mathcal{D}A \ e^{-S_B} \left(D_{ij}^{-1} D_{ji}^{-1} - D_{ii}^{-1} D_{jj}^{-1} \right) \det D$$

Integrand doesn't look holomorphic!

$$Z = \int \mathcal{D}A \ e^{-S_B} \det D = \int \mathcal{D}A \ e^{-\frac{S_{\text{eff}}}{S_B - \log \det D}}$$

Effective action isn't holomorphic, but the integrand is!

$$\left\langle \bar{\psi}_{i}\psi_{j}\bar{\psi}_{j}\psi_{i}
ight
angle =rac{1}{Z}\int\mathcal{D}A\;e^{-S_{B}}\left(D_{ij}^{-1}D_{ji}^{-1}-D_{ii}^{-1}D_{jj}^{-1}
ight)\det D$$

Integrand doesn't look holomorphic! Look at the pre-fermion-integration expression.

$$\int \mathrm{d}\bar{\psi}\mathrm{d}\psi \,\int \mathcal{D}A \, e^{-S_B} \underbrace{e^{-\bar{\psi}_a D_{ab}(A)\psi_b}}_{=1-\bar{\psi}_a D_{ab}(A)\psi_b+\cdots} \bar{\psi}_i\psi_j\bar{\psi}_j\psi_i$$

$$Z = \int \mathcal{D}A \ e^{-S_B} \det D = \int \mathcal{D}A \ e^{-\frac{S_{\text{eff}}}{S_B - \log \det D}}$$

Effective action isn't holomorphic, but the integrand is!

$$\left\langle \bar{\psi}_{i}\psi_{j}\bar{\psi}_{j}\psi_{i}
ight
angle =rac{1}{Z}\int\mathcal{D}A\;e^{-S_{B}}\left(D_{ij}^{-1}D_{ji}^{-1}-D_{ii}^{-1}D_{jj}^{-1}
ight)\det D$$

Integrand doesn't look holomorphic! Look at the pre-fermion-integration expression.

$$\int \mathrm{d}\bar{\psi}\mathrm{d}\psi \,\int \mathcal{D}A \, e^{-S_B} \underbrace{e^{-\bar{\psi}_a D_{ab}(A)\psi_b}}_{=1-\bar{\psi}_a D_{ab}(A)\psi_b+\cdots} \, \bar{\psi}_i\psi_j\bar{\psi}_j\psi_i$$

$$\int \mathrm{d}\bar{\psi}\mathrm{d}\psi \,\int \mathcal{D}A \,\left[f_0(A) + f_{ab}(A)\bar{\psi}_a\psi_b + \cdots\right]\bar{\psi}_i\psi_j\bar{\psi}_j\psi_i$$

- What manifolds are good for gauge theories?
- Are there always manifolds with $\langle \sigma
 angle \sim 1?$

- New families of manifolds (Bursa, Kroyter, arXiv:1805.04941)
- Apply to gauge theories (following arXiv:1807.02027)
- Real-time calculations: transport coefficients, etc.

Outline

Fermion Sign Problem

Cauchy Generalized

Thirring Model

Contour Integration

Curved Manifolds

SOMME

Results

Beating the Thimbles

Holomorphic Integrands

Future Work

Origin of the Smile

Subgraph Expansion of the Fermion Determinant

$$D = \begin{pmatrix} m & e^{iA_{1}(x_{1})} & 0 & e^{\mu + iA_{0}(x_{1})} \\ e^{-iA_{1}(x_{1})} & m & e^{\mu + iA_{0}(x_{2})} & 0 \\ 0 & e^{-\mu - iA_{0}(x_{2})} & m & e^{-iA_{1}(x_{3})} \\ e^{-\mu - iA_{0}(x_{1})} & 0 & e^{iA_{1}(x_{3})} & m \end{pmatrix} \sim \underbrace{1}_{1} \underbrace{2}_{1} \underbrace{2}_{$$

Subgraph Expansion of the Fermion Determinant

$$D = \begin{pmatrix} m & e^{iA_{1}(x_{1})} & 0 & e^{\mu + iA_{0}(x_{1})} \\ e^{-iA_{1}(x_{1})} & m & e^{\mu + iA_{0}(x_{2})} & 0 \\ 0 & e^{-\mu - iA_{0}(x_{2})} & m & e^{-iA_{1}(x_{3})} \\ e^{-\mu - iA_{0}(x_{1})} & 0 & e^{iA_{1}(x_{3})} & m \end{pmatrix} \sim \underbrace{1}_{0} \underbrace{2}_{0} \\ \longrightarrow = e^{iA_{1}(x)} \qquad \uparrow = e^{iA_{0}(x) + \mu} \qquad \downarrow = e^{-iA_{0}(x) - \mu} \qquad \bigcirc = m$$

Subgraph Expansion of the Fermion Determinant

$$D = \begin{pmatrix} m & e^{iA_{1}(x_{1})} & 0 & e^{\mu + iA_{0}(x_{2})} \\ e^{-iA_{1}(x_{1})} & m & e^{\mu + iA_{0}(x_{2})} & 0 \\ 0 & e^{-\mu - iA_{0}(x_{2})} & m & e^{-iA_{1}(x_{3})} \\ e^{-\mu - iA_{0}(x_{1})} & 0 & e^{iA_{1}(x_{3})} & m \end{pmatrix} \sim \underbrace{1}_{4} \xrightarrow{4}_{2}$$

$$\longrightarrow = e^{iA_{1}(x)} \qquad \uparrow = e^{iA_{0}(x) + \mu} \qquad \downarrow = e^{-iA_{0}(x) - \mu} \qquad \textcircled{0} = m$$

$$\det D = \underbrace{1}_{4} \underbrace{1}_{4} \xrightarrow{6}_{3} \xrightarrow{6}_{4} + \underbrace{1}_{4} \underbrace{1}_{4} \xrightarrow{6}_{4} \xrightarrow{6}_{4} + \cdots \xrightarrow{6}_{4} \xrightarrow{6}_{4} \xrightarrow{6}_{4} + \cdots \xrightarrow{6}_{4} \xrightarrow{6}_{4$$

Origin of the Smile: Large- μ Limit

Origin of the Smile: Large- μ Limit

$$\det D = \left[\begin{array}{c} & & \\ &$$

$$Z \approx e^{V\beta\mu} \int \left[\prod_{x} \mathrm{d}A_0(x) \mathrm{d}A_1(x) \right] \prod_{x} e^{\cos A_0(x) + iA_0(x)} e^{\cos A_1(x)}$$

Origin of the Smile: Large- μ Limit

$$Z \approx e^{V\beta\mu} \int \left[\prod_{x} \mathrm{d}A_0(x) \mathrm{d}A_1(x)\right] \prod_{x} e^{\cos A_0(x) + iA_0(x)} e^{\cos A_1(x)}$$

$$Z \approx e^{V\beta\mu} \left[\int \mathrm{d}A_1(x) \; e^{\cos A_1(x)} \right]^V \left[\int \mathrm{d}A_0(x) \; e^{\cos A_0(x) + ix} \right]^V$$